IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. wnich may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagde
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illusirations en coulour
Bound with other material/
Relić avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion ie long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparalssent dens le texte, mais, lorsque cela était possible, cas pages n'ont pas ofté filmeses.

Additional commonts:/
Commentaires supplémentaires:

L'Instltut a microfilmé le meilleur exemplaire qu'il lui a dté possible de se procurer. Les détails de cet exemplaire qui sont peut-dtre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans le méthode normale de filmage sont indiquds ci-dessous.

Coloured pages/
 Pages de couleur

Peges damaged/
Pages endommagdes
Pages restored and/or laminated/
Pages restaurdes et/ou pelliculdes
Pages discoloured, stained or foxed/
Pages dacolorées, tachetbes ou piquèes
Pages detached/
Pages détachées

Showthrough/
Trensparence

Quality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir ta meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The last recorded frame on each microtiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichover applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmd fut reproduit gratce it ia générosité de:

D. B. Waldon Library
University of Wastern Ontario
(Regional History Room)

Les images suivantes ont bté reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmd. ot en conformitt avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en paplor eat imprimbe sont filmés en commençant par le premier plat et en terminant soit par la dernidre fage qui comporte une empreinte d'impresaion ou d'illustration, soit par le second plat, seion le cas. Tous les autres oxemplaires originaux sont filmés en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle emprointe.

Un des symboies suivants apparaitra sur la dernidre image de chaque microfiche, selon le cas: lo symbole \rightarrow signifie "A SUIVRE". It symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmbe à des taux de réduction différents. Lorsque le document est trop grand pour batre reproduit en un seul clichd, il eat filmé à partir de l'angle supórieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images núcessaire. Les diagrammes suivants illuatrent la méthode.

1	2	3
4	5	6

ELEMENTS OF GEOMETRY

EXERCISES AND NOTES.

J. HAMBLIN SMITH, M.A., of Gontille and Caius Collego, and late Lecturer at St. Heter's Collige, Cumbriage.

WITH

SELECTION OF EXAMINATION PAPERS, BY THOS. KIRKLAND, MA., SCIENCE MASTER, NORMAL SCHOOL.

CANADIAN COPTRIGHT EDITION.
TORONTO:
W. J. GAGE \& CO.
1882. Agriculture.

PREFACE.

To preserve Euclid's order, to supply omissions, to remove defects, to give brief notes of explanation and simpler methods of proof in cases of acknowledged diffieulty-such are the main objects of this Edition of the Elements.

The work is based on the Greek text, as it is given in the Editions of Angust and Peyrard. To the suggestions of the late Professor De Morgan, published in the Companion to the British Almanack for 1849, I have paid constant deference.

A limited use of symbolic representation, wherein the symbols stand for words and not for operations, is generally regarded as desirable, and I have been assured, by the highest authorities on this point, that the symbols employed in this book are admissible in the Examinations at Oxford and Cambridge. ${ }^{1}$

I have generally followed Euclid's method of proof, but not to the exclusion of other methods recom-

[^0]mended by their simplicity, such as the demonstrations by which I propose to replace (at least for a first reading) the difficult Theorems 5 and 7 in the First Book. I have also attempted to render many of the proofs, as for instance Propositions 2, 13, and 35 in Book I., and Proposition $1: 3$ in Book II., less confusing to the learner.

In Propositions 4, 5, 6, 7, and 8 of the Second Book I have ventured to make an important change in Euclid's mode of exposition, by omitting the diagomals from the diagrams and the gnomons from the text.

In the Third Book I have deviated with even greater bollness from the precise line of Euclid's method. For it is in treating of the properties of the circle that the importance of certain matters, to which reference is made in the Notes of the present volume, is fully brought ont. I allude especially to the application of Superposition as a test of equality, to the conception of an Angle as a margnitude capable of unlimited increase, and to the development of the methods connected with Loci and Symmetry.

The Exercises have been selected with considerable care, chiefly from the Senate House Examination Papers. They are intended to be progressive and easy, so that a learner may from the first be induced to work out something for limself.

I desire to express my thanks to the friends who have improved this work by their suggestions, and to beg for further help of the same kind.

J. HAMBLIN SMITH

Cambridge, 1873.

ELEMENTS OF GEOMETRY.

INTRODUCTORY REMARKS.

When a block of stone is hewn from the rock, we call it a Solid Body. The stone-cutter shapes it, and brings it into that which we call regularity of form ; and then it becomes a Solid Figure.

Now suppose the figure to be such that tho block has six flat sides, each the exict comuterpart of the others; so that, to one whostands fucing a corner of the block, the three sides which are visibie present the appearance represented in this diayram.

Each side of the firme is called a Surface; and when smoothed and polished, it is called a Plane Surface.

The sharp and well-defined edges, in which each pair of sides meets, are called Lincs.

The place, at which any three of the edges mect, is called a Point.

A Magnitude is anything which is made up of parts in any way like itself. Thus, a line is a magnitude ; because we m: . regard it as made up of parts which are themselves lines.

The properties Length, Breadth (or Width), and Thickness (or Depth or Height) of a body are called its Dimensions.

We make the following distinction between Solids, Surfaces, Lines, and Points:

A Solid has three dimensions, Length, Breadth, Thickness.
A Surface has two dimensions, Lengh, Breadth.
A Line has one dimensinn, Length.
A point has no dimensions.

B. E.

BOOK \mathbf{I}.

DEFINITIONS.

I. A Point is that which has no parts.

This is equivalent to saying that a Point has no magnitude, since we define it as that which cannot be divided into smaller parts.
II. A Line is length without breadth.

We cannot conceive a visible line without breadth; but we can reason about lines as if they had no breadth, and this is what Euclid requires us to do.
III. The Extremities of finite Lines are points.

A point marks position, as for instance, the place where a line begins or ends, or meets or crosses another line.
IV. A Straight Line is one which lies in the same direction from point to point throughout its length.
V. A Surface is that which has length and breadth only.
VI. The Extremities of a Surface are lines.
VII. A Plane Surface is one in which, if any two points be taken, the straight line between them lies wholly in that surface.

Thus the ends of an uncut cedar-peneil are plane surfaces; since two points may be taken in it such that the straight line joining them will not lie on the surface of the pencil.

In our introductory remarks we gave examples of a Surface, a Line, and a Point, as we know them through the evidence of the senses.

The Surfaces, Lines, and Points of Geometry may be regarded as mental pictures of the surfaces, lines, and points which we know from experience.

It is, however, to be observed that Geometry requires us to conceive the possibility of the existence
of a Surface apart from a Solid body,
of a Line upart from a Surface.
of a Point apart from a Line.
VIII. When two straight lines meet one another, the inclination of the lines to one another is called an Anale.

When two straight lines have one point common to both, they are said to form an angle (or angles) at that point. The point is called the vertex of tho angle (or angles), and the lines are called the arms of the angle (or angles).

Thus, if the lines $O A, O B$ are terminated at the same point O, they form an angle, which is called the angle at O, or the angle $A O B$, or the angle $B O A$,- the letter which marks the vertex being put between those that mark the arms.

Again, if the line $C O$ meets the line $D E$ at a point. in the line $D E$, so that O is a point common to both lines, $C O$ is said to make with $D E$ the angles $C O D, C O E$; and these (as having one arm, $C O$, common to both) are called adjacent angles.

Lastly, if the lines $F G, H K$ cut each other in the point O, the lines make with each other four angles $F O H, H O G, G O K$, KOF'; and of these GOH, FOK are called vertically opposite angles, as also are FOII and GOK.

When three or more straight lines as $O A, O B, O C, O D$ have a point O common to all, the angle formed by one of them, $O D$,

with $O A$ may be regarded as being made up of the angles $A O B$, $B O C, C O D$; that is, we may speak of the angle $A O D$ as a whole, of whieh the purts are the angles $A O B, B O C$, and $C O D$.

Hence we may regard an angle as a Magnitude, inasmuch as any angle may be regarded as being made up of parts which are themselves angles.

The size of an angle depends in no way on the length of the arms by which it is bounded.

We shall explatin hereafter the restriction on the magnitude of angles enforced by Euclid's definition, and the important results that follow an extension of the definition.
IX. When a straight line (as $A B$) meeting another straight
line (as $C D$) makes the adjacent angles ($A B C$ and $A B D$) equal to one another, each of the angles is called a Right Angle; and each line is said to be a Perpendicular to the other.
X. An Obtuse Angle is one which is greater than a right angle.
XI. An Acute Angle is one which is less than a right angle.

XII. A Figure is that which is enclosed by one or more boundaries.
XIII. A Circle is a plane figure contained by one line, which is called tho Cincumpenesce, mond is such, that all straight lines drawn to the circumference from a. certain point (cnlled the Centre) within the figure are equal to one another.
XIV. Any straight line drawn from the centre of a circle to the circumference is called a Radius.
XV. A Diameter of a circle is a straight line drawn through the centre and terminated both ways by the circumference.

Thus, in the diagram, O is the centre of the circle $A B C D$, $O A, O B, O C, O D$ are Radii of the circle, and the straight line $A O D$ is a Dianeter. Hence the radius of a circle is hatf the diameter.
XVI. A Semicirche is the figure contained by a dianctes and the part of the circumference cut off by the diameter.
XVII. Rectilinear figures are those which are contained by straight lines.

The Perineter (or Periphery) of a rectilincar figure is the sum of its sides.
XVIII. A Triangle is a plane figure contained by threo straight lines.
XIX. A Quadrilateral is a plane figure contained by four straight lines.
XX. A Polygovi is a plane figure contaned by more than four straight lines.

When a polyson has all its sides cqual and all its angles equal it is called a regular polyero.
XXI. An Equilateral Triangle is one which has all its sides equal.

XXII. An Isosceles Triangle is one which has two sides equal.

The third side is often called the base of the triangle.

The term base is applied to any one of the sides of a triangle to distinguish it from the other two, especially when they have been previously mentioned.
XXIII. A Riaht-analed Triangle is one in which one of the angles is a right angle.

The side subtending, that is, which is opposite the right angle, is called the Hypotenuse.
XXIV. An Obtcse-angled Triangle is one in which one of the angles is obtuse.

It will be shewn hereafter that a triangle ean have only one of its angles either equal to, or greater than, a right angle.
XXV. An Acute-angled Triangle is one in which all the angles are acute.

XXVI. Parallel Straight Lines are such as, being in the same plane, never meet when

Postulates

Let it be granted-
I. That a straight line may be drawn from any one point to any other point.
II. That a terminated straight line may be produced to any length in a straight line.
III. That a circle may be described from any centre at any distance from that centre.
IV. That all right angles are equal to one another.
V. That two straight lines canuot enclose a space.
VI. That if a straight line meet two other straight lines, so as to make the two interior angles on the same side of it, taken together, less than two right angles, these straight lines being continually produced shall at length meet upon that side, on which are the angles, which are together less than two right angles.

The word rendered "Postulates" is in the original aìŋ́ $\mu a \tau a$, "requests."
In the first three Postulates Euclid states the use, under certain restrictions, which he desires to make of certain instruments for the construction of lines and circles.

In Post. i. and in. he asks for the use of the straight ruler, wherewith to draw straight lines. The restriction is, that the ruler is not supposed to be marked with divisions so as to measure lines.

In Post. inl he astrs for the use of a pair of compasses, wherewith to describe a circle, whose centre is at one extremity of a given line, and whose circumference passes through the other extremity of that line. The restriction is, that the compasses are not supposed to be capable of conveying distances.

Post. IV. and v. refer to simple geometrical facts, which Euclid desires to take for granted.

Post. vi. may, as we shall shew hereafter, be deduced from a more simple Postulate. The student must defer the consideration of this Postulate, till he has reached the 17th Proposition of Book I.

Euclid next enumerates, as statements of fact, nine Axioms
or, as he calls them, Common Notions, applicable (with the exception of the eighth) to all kinds of magnitudes, and not necessarily restricted, as are the Postulates, to geometrical magnitudes.
Axioms.
I. Things which are equal to the same thing are equal to
one another.
II. If equals be added to equals, the wholes are equal.
III. If equals be taken from equals, the remainders are equal.
IV. If equals and unequals be added together, the wholes are unequal.
V. If equals be taken from unequals, or unequals from equals, the remainders are unequal.
VI. Things which are double of the same thing, or of equal things, are equal to one another.
VII. Things which are halves of the same thing, or of equal things, are equal to one another.
VIII. Magnitudes which coincide with one another are equal to one another.
IX. The whole is greater tham its part.

With his Common Notions Euclid takes the ground of anthority, saying in efect, "To my Postulates I request, to my Common Notions I claim, your assent."

Euclid develops the science of Geometry in a series of Propositions, some of which are called Theorems and the rest Problems, though Euclid himself makes no such distinction,

By the name Iheorem we understand a truth, capable of demonstration or proof by deduction from truths previously admitted or proved.

By the name Problem we understand a construction, capable of being effected by the employment of principles of construction previously admitted or proved.

A Corollary is a Theorem or Problem easily deduced from, or effected by means of, a Proposition to which it is attached.

We shatl divide the First Book of the Elements into three sections. The reason for this division will appear in the course of the work.

SYMBOLS AND ABBREVIATIONS USED IN BOOK I.

for	because	\bigcirc	for	circle
	therefore			.circumference
=	is (or are) equal to			parallel
	angle	\square		parallelogram
	triangle			perpendicular

equilat.equilateral
extr..........exterior
intr..........interior
pt............point
rectil.rectilinear

```
reqd. .........required
rt..............right
sq. ...........square
sqq.............squares
st..............straight
```

It is well known that one of the chief difficulties with learners of Euchd is to distinguish letween what is assumed, or given, and what has to be proved in some of the Propositions. To make the distinction clearer we shall put in italics the statements of what has to he done in a Problem, and what has to be proved in a Theorem. The last line in the proof of every Proposition states, that what had to be done or proved has been done or proved.

The letters Q. e. F. at the end of a Problem stand for Quod erat faciendum.
The letters Q. E. D. at the end of a Theorem stand for Quod erat demonstrandum.

In the marginal references :
Post. stands for Postulate.
Def. Definition.
Ax. Axiom.
I. 1. Book I. Proposition 1.

Hyp. stands for Hypothesis, supposition, and refers to comething grauted, or assumed to be true.

SECTION I．

On the Properties of Triangles．

Proposition I．Problem．
To describe an equilateral triangle on a givent straight line．

Let $A B$ be the given st．line．
$I l$ is required to describe an equilat．\triangle on $A B$ ．
With centre A and distance $A B$ describé © $B C D$ ．Post． 3.
With centre B ind distance $B A$ descrive $\odot A C E$ ．Post． 3.
From the pt．C ，in which the ©s cut one another， draw the st．lines $C A, C D$ ．－${ }^{4}$ Post．l．
Then will $A B C$ be an equilat．\triangle ．
For $\quad \because A$ is the centre of $\odot B C D$ ，
$\therefore A C=A B$ ．
Def． 13.
And $\quad \because B$ is the centre of $\odot A C E$ ，
$\therefore B C=A B$ ．
Def． 13.
Now $\quad \because A C, B C$ are each $=A B$ ，
$\therefore A C=B C$ ．
Ax． 1.
＇Thus $A C, A B, B C$ are all equal，and an equilat．$\triangle A D C$ has been described on $A B$ ．
Q.E. F.

Proposition II. Problem.

From a given point to draw a straight line equal to a given straight line.

Let A be the given pt., and $D C^{\prime}$ the given st. line. It is required to draw from A a st. line equal to $B C$.

From A to B draw the st. line $A B$.
Post. 1.
On $A B$ describe the equilat. $\triangle A B D$.
I. 1.

With centre B and distance $B C$ describe © CGII. Post. 3.
Produce $D B$ to meet the O ce $C G I I$ in G.
With centre D and distance $D G$ describe © $G K L$. Post. 3. Produce $D A$ to meet the O ce $G K L$ in L.
Then will $A L=B C$.
For $\quad \because B$ is the centre of $\odot C G H$,
$\therefore B C=B G$.
Def. 13.
And $\quad \because D$ is the centre of $\odot G K L$,
$\therefore D L=D G$.
Def. 13.
And parts of these, $D A$ and $D B$, are equal. Def. 21.
\therefore remainder $A L=$ remainder $B G$. Ax. 3 .
But $B C=B G$;
$\therefore A L=B C$.
Ax. 1.
Thus from pt. A a st. line $A \cdot L$ has heen drawn $=B C$.
Q. E. F.

Proposition III. Problem.

From the grater of two given straight lines to cut off a part equal to the less.

Let $A B$ be the greater of the two given st. lines $A B, C D$.
It is required to cut off from $A B$ a part $=C D$.
From A draw the st. line $A E=C D$. I. 2.
With centre A and distance $A E$ describe $\odot E F H$, cutting $A B$ in F.
Then will $A F=C D$.
For
$\because A$ is the centre of $\odot E F H$, $\therefore A F=A E$.
But

$$
A E=C D
$$

$$
\therefore A F=C D .
$$

Thus from $A B$ a part $A F$ has been cut off $=C D$.
Q. E. F.

Exercises.

1. Shew that if straight lines be drawn from A and B in the diagram of Prop. I to the other point in which the circles intersect, another equilateral triangle will be described on $A B$.
2. By a construction similar to that in Prop. III. produce the less of two given straight lines that it may be equal to the greater.
3. Draw a figure for the case in Prop. 11., in which the given point coincides with B.
4. By a similar construction to that in Prop. I. describe on a given straight line in isosceles triangle, whose equal sides shall be each equal to another given straight line.

Proposition IV. Theorem.

If two triangles have two sides of the nome equal to two sides of the other, each to cuch, and have likicwise the angles contained by those sides equal to one another, they must have their third sides equal; and the two triangles must be equal, and the other angles must be cqual, each to each, viz. those to which the equal sides are opposite.

In the $\triangle S A B C, D E F$,
let $A \cdot B=D E$, and $A C=D F$, and $\angle B A C=\angle E D F$.
Then must $B C=E F$ and $\triangle A B C=\triangle D E F$, and the other $\angle s$, to which the equal sides are opposite, must be equal, that is, $\angle A B C=\angle D E^{\prime} H^{\prime}$ and $\angle A C B=\angle D F E$.

For, if $\triangle A B C$ be applied to $\triangle D E F$, so that A coincides with D, and $A B$ falls on $D E$,
then $\because A B=D E, \therefore B$ will coincide with E.
And $\because A B$ coincides with $D E$, and $\angle B A C=\angle E D F$, Hyp. $\therefore A C$ will fall on $D F$.
Then $\because A C=D F, \therefore C$ will coincide with F.
And $\because B$ will coincide with E, and C with F, $\therefore B C$ will coincide with $E F$;
for if not, let it fall otherwise as $E O F$: then the two st. lines $B C, E F$ will enclose a space, which is impossible. Post. 5.
$\therefore B C$ will coincide with and \therefore is equal to $E F, A x$. S.

and $\angle A B C \ldots \ldots$
and $\angle A C B \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
Q. E. D.

Note 1. On the Method of Superposition.

Two geometrical magnitudes are said, in accordance with Ax. viil. to be equal, when they can be so placed that the boundaries of the one coincide with the boundaries of the other.

Thus, two straight lines are equal, if they can he so placed that the points at their extremities coincide : and two angles are equal, if they can be so placed that their vertices coincide in position and their arms in direction : and two triangles are equal, if they can be so placed that their sides coincide in direction and magnitude.

In the application of the test of equality by this Mcthod of Superposition, we assume that an angle or a triangle may be moved from one place, turned over, and put down in another place, without altering the relative positions of its boundaries.

We also assume that if onc part of a straight line coincido with one part of another straight line, the other parts of the lines also coincide in direction ; or, that straight lines, which coincide in two points, coincide when produced.

The method of Superposition enables us also to compare magnitudes of the same kind that are uncqual. For example, suppose $A B C$ and $D E F$ to be two given angles.

Suppose the arm $B C$ to be placed on the arm $E F$, and the vertex B on the vertex E.

Then, if the arm $B A$ coincide in direction with the arm $E D$, the angle $A B C$ is equal to $D E F$.
If $B A$ fall between $E D$ and $E F$ in the direction $E P$, $A B C$ is less than $D E F$.

If $B A$ fall in the direction $E Q$ so that $E D$ is between $E Q$ and $E F, A B C$ is greater than $D E F$.

Note 2. On the Conditions of Equality of two Triangles. that the of the placed o angles coincide gles are ucide in
rethod of may be another ndaries. coincide s of the es, which compare example,

A Triangle is composed of six parts, three sides and three angles.

When the six parts of one triangle are equal to the six parts of another triangle, each to each, the Triangles are said to be equal in all respects.

There are four cases in which Euclid proves that two triangles are equal in all respects; viz., when the following parts are equal in the two triangles.

1. Two sides and the angle between them. I. 4.
2. Two angles and the side between them. I. 26.
3. The three sides of each. I. 8.
4. Two angles and the side opposite one of them. I. 26.

The Propositions, in which these cases are proved, are the most important in our First Section.

The first case we have proved in Prop. iv.
Availing ourselves of the method of superposition, we can prove Cases 2 and 3 by a process more simple than that employed by Euclid, and with the further advantage of bringing them into closer connexion with Case 1. We shall therefore give three Propositions, which we designate A, B, and C, in the Place of Euclid's Props. v. vi. vir. vin.

The displaced Propositions will be found on pp. 108-112.
Proposition A corresponds with Euclid I. E. B I. 26, first part.
O I. 8.

Proposition A. Throrem.

If two sides of a triangle be equal, the angles opposite those sides must also be equal.

Fig. 1.

Fig. 2.

In the isosceles triangle $A B C$, let $A C=A B$. (Fig. 1.)
Then must $\angle A B C=\angle A C B$
Imagine the $\triangle A B C$ to be taken up, turned round, and set down again in a reversed position as in Fig. 2, and designate the angular points $A^{\prime}, B^{\prime}, C^{\prime \prime}$.

Then in $\triangle \mathrm{s} A B C, A^{\prime} C^{\prime} B^{\prime}$,
$\because A B=A^{\prime} C^{\prime}$, and $A C=A^{\prime} B^{\prime}$, and $\angle B A C=\angle C^{\prime} A^{\prime} B^{\prime}$,

$$
\therefore \angle A B C=\angle A^{\prime} C^{\prime \prime} B^{\prime} . \quad \text { I. } 4 .
$$

But

$$
\angle A^{\prime} C^{\prime} B^{\prime}=\angle A C B ;
$$

$$
\therefore \angle A B C=\angle A C B .
$$

Cor. Hence every equilateral triangle is also equiangular.
Nore. When one side of a triangle is distinguished from the other sides by being called the Base, the angular point opposite to that side is called the V criex of the triangle.

C the fr If them

Proposition B. Thegres.

If two triangles have two angles of the one cqual to two angles of the other, each to each, and the sides adjacent to the cqual angles in each also equal; then must the triangles be equal in all respects.

In $\triangle \mathrm{s} A B C, D E F$,
let $\angle A B C=\angle D E F$, and $\angle A C B=\angle D F E$, and $B C=E F$.
Then must $A B=D E$, and $A C=D F$, and $\angle B A C=\angle E D F$.
For if $\triangle D E F$ be applied to $\triangle A B C$, so that E coincides with B, and $E F^{\prime}$ falls on $B C$;

$$
\begin{aligned}
\text { then } \because E F & =B C, \therefore F \text { will coincide with } C ; \\
\text { and } & \because \angle D E F=\angle A B C, \therefore E D \text { will fall on } B A ; \\
& \therefore D \text { will fall on } B A \text { or } B A \text { produced. } \\
\text { Again, } & \because \angle D F E=\angle A C B, \therefore F D \text { will fall on } C A ; \\
& \therefore D \text { will fall on } C A \text { or } C A \text { produced. }
\end{aligned}
$$

$\therefore D$ must coincide with A, the only pt. common to $B A$ and $C A$.
$\therefore D E$ will coincide with and \therefore is equal to $A B$,
\qquad
and $\angle E D F . ~ \angle B A C$,

and \therefore the triangles are equal in all respects.
Q. E. D.

Cor. Hence, by a process like that in Prop. A, we cau prove the following theorem:

If two angles of a triungle be cqual, the sides which subtenc them are also equal ©ucl. I. 6.1

Proposithon C. Throbrah.
If tevo triamgles have the three sides of the one equal to the three sides of the other, each to each, the triangles must be equal $i n$ all respects.

Let the three sides of the $\triangle s A B C, D E F$ be equal, each to each, that is, $A B=D E, A C=J) F$, ind $B C=E F$.

Then must the triangles be equal in all respects.
Imagine the $\triangle D E F$ to be turned over and applied to the $\triangle A B C$, in such a way that $E F$ coincides with $B C$, and the vertex D falls on the side of $B C$ opposite to the side on which A falls; and join $A D$.

Case I. When $A D$ passes through $B C$.

Then in $\triangle A B D, \because B D=B A, \therefore \angle B A D=\angle B D A$, I. A.
And in $\triangle A C D, \because C D=C A, \therefore \angle C A D=\angle C D A$, I. A.
\therefore sum of $\angle \mathrm{s} B A D, C A D=$ sum of $\angle \mathrm{s} B D A, C D A, A x .2$. that is,

$$
\angle B A C=\angle B D C .
$$

Hence we see, referring to the originul triangles, that

$$
\angle B A C=\angle E D F .
$$

\therefore, by Prop. 4, the triangles are equal ; ill respects.

Case II. When the line joining the vertjces does not pass through $B C$.

Then in $\triangle A B D, \because B D=B A, \therefore \angle B A D=\angle B D A$, I. A.
And in $\triangle A C D, \because C D=C A, \therefore \angle C A D=\angle C D A$, I. A.
Hence since the whole angles $B A D, B D A$ are equal. and parts of these $C A D, C D A$ are equal.
\therefore the remainders $B A C, B D C$ are equal. $\Lambda x .3$.
Then, as in Case I., the equality of the original triangles may be proved.

Case III. When $A C$ and $C D$ are in the same straight line.

Then in $\triangle A B D, \because B D=B A, \therefore \angle B A D=\angle B D A, \quad$ I. A.
that is, $\angle B A C=\angle B D C$.
Then, as in Case I., the equality of the original triangles may be proved.
Q. E. D.

Proposition IX. Problem.
To bisect a given angle.

Let $B A C$ be the given angle.
It is required to bisect $\angle B A C$.
In $A B$ take any pt. D.
In $A C$ make $A E=A D$, and join $D E$.
On $D E$, on the side remote from A, describe an equilat. $\triangle D F E$.

Join $A F$. Then $A F$ will bisect $\angle B A C$.
For in $\triangle s A F D, A F E$, $\because A D=A E$, and $A F$ is common, and $F D=F E$,

$$
\therefore \angle D A F=\angle E A F, \quad \text { I. c. }
$$

that is, $\angle B A C$ is bisected by $A F$.
Q. E. F.

Ex. 1. Shew that we can prove this Proposition by neans of Prop. iv. and Prop. A., without applying Prop. C.
Ex. 2. If the equilateral triangle, emploved in the construction, be described with its vertex tow ords the given angle; shew that there is one case in which the construction will fail. and two in which it will hold good.

Note.-The line dividing an angle into two equal parts is called the Bisector of the angle.

Proposition X. Problem.

To bisect a given finite straight line.

Let $A B$ be the given st. line.
It is required to bisect $A B$.
On $A B$ describe an equilat. $\triangle A C B$.
I. 1.

Bisect $\angle A C B$ by the st. line $C D$ meeting $A B$ in D; I. 9.
then $A B$ shall be bisected in D.
For in $\triangle S A C D, B C D$,
$\because A C=B C$, and $C D$ is common, and $\angle A C D=\angle B C D$,

$$
\therefore A D=B D \text {; }
$$

$\therefore A B$ is bisected in D.

Q. E. F.

Ex. 1. The straight line, drawn to bisect the vertical angle of an isosceles triangle, also bisects the base.

Ex. 2. The straight line, drawn from the vertex of an isosceles triangle to bisect the base, also bisects the vertical angle.

Ex. 3. Produce a given finite straight line to a point, such that the part produced may be one-third of the line, which is made up of the whole and the part produced.

Proposition XI. Problem.

To draw a straight line at right angles'to a given straight line from a given point in the same.

Let $A B$ be the given st. line, and C a given pt. in it.
It is required to draw from C a st. line \perp to $A B$.
Take any pt. D in $A C$, and in $C B$ make $C E=C D$.
On $D E$ describe an equilat. $\triangle D F^{\prime} E$.
I. 1.

Join FC. $F C$ shall be \perp to $A B$.
For in $\triangle \mathrm{s} D C F, E C F$,
$\because D C=C E$, and $C F$ is common, and $F D=F E$,

$$
\begin{array}{rr}
\therefore \angle D C F=\angle E C F ; & \text { I. c. } \\
\text { and } \therefore F C \text { is } \perp \text { to } A B . & \text { Def. } 9 .
\end{array}
$$

Cor. To draw a straight line at right angles to a given straight line $A C$ from one extremity, C, take any point D in $A C$, produce $A C$ to E, making $C E=C D$, and proceed as in the proposition.

Ex. 1. Shew that in the diagram of Prop. ix. $A F$ and $E D$ intersect each other at right angles, and that $E D$ is bisected by $A F$.
Ex. 2. If O be the point in which two lines, bisecting $A B$ and $A C$, two sides of an equilateral triangle, at right angles, meet ; shew that $O A, O B, O C$ are all equal.

Ex. 3. Shew that Prop. xi. is a particular case of Prop. Ix.

Proposition XII. Problem.

To draw a straight line perpendicular to a given straight line of an unlimited length from a given point without it.

Let $A B$ be the given st. line of unlimited length; C the given pt. without it.

It is required to draw from C ast. line \perp to $A B$.
Take any pt. D on the other side of $A B$.
With centre C and distance $C D$ describe a \odot cutting $A B$ in E and F.

Bisect $E F$ in O, and join $C E, C O, C F$. I. m
Then $C O$ shall be \perp to $A B$.
For in $\triangle \mathrm{s} C O E$, COF,
$\because E O=F O$, and $C O$ is common, and $C E=C F$,
$\therefore \angle C O E=\angle C O F$;
I. c.
$\therefore C O$ is \perp to $A B$. Def. 9.
Q. E. F.

Ex. 1. If the straight line were not of unlimited length, how might the construction fail?

Ex. 2. If in a triangle the perpendicular from the vertex on the base bisect the base, the triangle is isosceles.

Ex. 3. The lines drawn from the angular points of an equilateral triangle to the middle points of the opposite sides are equal.

Miscelianeous Exercises on Props. I. to XII.

1. Draw a figure for Prop. II. for the case when the given point A is
(a) below the line $B C$ and to the right of it.
(β) below the line $B C$ and to the left of i.
2. Divide a given angle into four equal parts.
3. The angles B, C, at the base of an isosceles triangle, are bisected by the straight lines $B D, C D$, meeting in D; shew that $B D C$ is an isosceles triangle.
t. D, E, F are prints taken in the sides $B C, C A, A B$, of an equilateral triangle, so that $B D=C E=A F$. Shew that the triangle $D E F$ is equilateral.
4. In a given straight line find a point equidistant from
tro given points; lst, on the same side of it ; 2d, on opposite sides of it .
5. $A B C$ is a triangle l:aving the angle $A B C$ acute. In $B A$, or $L A$ produced, find a point D such that $B D=C D$.
6. The equal sides $A B, A C$, of an isosceles triangle $A B C$ are produced to points F and G, so that $A F=A G$. $B G$ and $C F$ are joined, and H is the point of their intersection. Prove that $B H=C H$, and also that the angle at A is bisected by $A H$.
7. $B A C, B D C$ are isosceles triangles, standing on opposite sides of the same base $B C$. Prove that the straight line from A to D bisects $B C$ at right angles.
8. In how many directions may the line $A E$ be drawn in Prop. III. ?
9. The two sides of a triangle being produced, if the angles on the other side of the base be equal, shew that the triangle is isosceles.
10. $A B C, A B D$ are two triangles on the same base $A B$ and on the same side of it, the vertex of each triangle being outside the other. If $A C=A D$, shew that $B C$ cannot $=B D$.
11. From C any point in a straight line $A B, C D$ is drawn at right angles to $A B$, meeting a circle described with centre A and distance $A B$ in D; and from $A D, A E$ is cut off $=A C$: shew that $A P B$ is a mint angle.

Proposition XIII. Theorem.

The angles which one straight line makes with another upon one side of it are either two right angles, or together equal to two right angles.

Fig. 1.

Fig. 2.

Let $A B$ make with $C D$ upon one side of it the $\angle \mathrm{s} A B C$, $A B D$.

Ther must these be either two rt. $\angle \mathrm{s}$, or together equal to two rt. $<\mathrm{s}$.
First, if $\angle A B C=\angle A B D$ as in Fig. 1 , each of them is a rt . \angle.

Def. 0.
Secondly, if $\angle A B C$ be not $=\angle A B D$, as in Fig. 2, from B draw $B E \perp$ to $C D$.
I. 11.

Then sum of $\angle \mathrm{s} A B C, A B D=$ sum of $\angle \mathrm{s} E B C, E B A, A B D$, and sum of $\angle \mathrm{s} E E C, E B D=$ sum of $\angle \mathrm{s} E B C, E B A, A B D$;
\therefore sum of $\angle \mathrm{s} A B C, A B D=$ sum of $\angle \mathrm{s} E B C, E D D$;
Ax. 1.
\therefore sum of $\angle \mathrm{s} A B C, A B D=$ sum of a rt. \angle and $a \mathrm{rt} . \angle$;
$\therefore \angle \mathrm{s} A B C, A B D$ are together $=$ two $\mathrm{rt} . \angle \mathrm{s}$.
Q. E. D.

Ex. Straight lines drawn connecting the opposite angular points of a quadrilateral figure intersect each other in 0 . Shew that the angles at O are together equal to four right angles.

Note (1.) If two angles together make up a right angle, each is called the Complement of the other. Thus, in fig. 2. $\angle A B D$ is the complement of $\angle A B E$.
(2.) If two angles together make up two right angles, each is called the Supplement of the other. Thus, in both figures, $\angle A B D$ is the supplement of $\angle A B C$.

Proposition XIV. Theorem.

If, at a point in a straight line, tueo other straight lines, upon the opposite sides of it, make the adjacent angles together equal to two right angles, these two straight lines must be in one and the same straight line.

At the pt. B in the st. line $A B$ let the st. lines $B C, B D$, on opposite sides of $A B$, make $\angle \mathrm{s} A B C, A B D$ together $=$ two rt. angles.

Then $B D$ must be in the same st. line with $B C$.
For if not, let $B E$ be in the same st. line with $B C$.
Then $\quad \angle \mathrm{s} A B C, A B E$ together $=$ two $\mathrm{it} . \angle \mathrm{s}$. I. 13 .
And $\angle \mathrm{s} A B C, A B D$ together $=$ two rt. $\angle \mathrm{s}$. Hyp.
\therefore sum of $\angle \mathrm{s} A B C, A B E=$ sum of $\angle \mathrm{s} A B C, A B D$.
Take away from each of these equals the $\angle A B C$;

$$
\text { then } \angle A B E=\angle A B D \text {, }
$$

Ax. 3.
that is, the less $=$ the greater ; which is impossible,
$\therefore B E$ is not in the same st. line with $B C$.
Similarly it may be shewn that no other line but $B D$ is in the same st. line with $B C$.
$\therefore B D$ is in the same st. line with $B C$.
Q. E. D.

Ex. Sher the necessity of the words the opposite sides in the enunciation.

Proposition XV. Theorem.

If two straight lines cut one another, the vertically opposite angles must be equal.

Let the st. lines $A B, C D$ cut one another in the pt. E.
Then must $\angle A E C=\angle B E D$ and $\angle A E D=\angle B E C$.
For $\because A E$ meets $C D$,

$$
\therefore \text { sum of } \angle \mathrm{s} A E C, A E D=\text { two rt. } \angle \mathrm{s} \text {. I. } 13 .
$$

And $\because D E$ meets $A B$,

$$
\therefore \text { sum of } \angle \mathrm{s} B E D, A E D=\text { two rt. } \angle \mathrm{s} ; \quad \text { I. } 13 .
$$

$$
\therefore \text { sum of } \angle \mathrm{s} A E C, A E D=\text { sum of } \angle \mathrm{s} B E D, A E D ;
$$

$$
\therefore \angle A E C=\angle B E D .
$$

Ax. 3.
Similarly it may be shewn that $\angle A E D=\angle B E C$.
Q. E. D.

Corollary I. From this it is manifest, that if two straight lines cut one another, the four angles, which they make at the point of intersection, are together equal to four right angles.

Corollary II. All the angles, made by any number of straight lines meeting in one point, are together equal to four right angles.

Ex. 1. Shew that the bisectors of $A E D$ and $B E C$ are in the same straight line.

Ex. 2. Prove that $\angle A E D$ is equal to the angle between two straight lines drawn at right angles from E to $A E$ and $E C$, if both lie above $C D$.

Ex. 3. If $A B, C D$ bisect each other in E; shew that the triangles $A E D, B E C$ are equal in all respects.

Note 3. On Euclicl's definition of an Angle.

Euclid directs us to regard an angle as the inclination of two struight lines to each other, which meet, but are not in the same straight line.

Thus he does not recognise the existence of a single angle equal in magnitude to two right angles.

The words printed in italics are omitted as needless, in Def. vir., p. 3, and that definition may be extended with advantage in the following terms :-
Def. Let $W Q E$ be a fixed straight line, and $Q P$ a line which revolves about the fixed point Q, and which at first coincides with QE.

Then, when $Q P$ has reached the position represented in the diagram, we say that it has described the angle $E Q P$.

When $Q P$ has revolved so far as to coincide with $Q W$, we say that it has described an angle equal to two right angles.

Hence we may obtain an easy proof of Prop. xirr. ; for whatever the position of $P Q$ may be, the angles which it makes with $W E$ are together equal to two right angles.

Again, in Prop. xv. it is evident that $\angle A E D=\angle B E C$, since ench has the same supplementary $\angle A E C$.

We shall shew hereafter, p. 149, how this definition may be extended, so as to embrace angles greater than two right angles.

Phoposirion XVI. Theorem.
If one side of a triangle be producel, the coterior angle is greater than either of the interior onyosita angles.

Let the side $B C$ of $\triangle A B C$ be pronduced to D.
Then must $\angle A C D$ be greater than either $\angle C A B$ or $\angle A B C$. Bisect $A C$ in E, and join $B E$. I. 10.
Produce $B E$ to F, making $E F=E E$, and join $F C$.
Then in $\triangle \mathrm{s}$ BEA, FEC',
$\because D E=F E$, and $E A=E C$, and $\angle B E A=\angle F E C$,
I. 15.

$$
\therefore \angle E C D=\angle E A B .
$$

I. 4.

Now

$$
\angle A C D \text { is greate tham } \angle E C F \text {; }
$$

$$
\text { Ax. } 3 .
$$

$\therefore \angle A C D$ is greater thom $\angle E A B$,
that is, $\quad \angle A C D$ is greater than $\angle C A B$.
Similarly, if $A C$ be produced to G it may be shewn that $\angle B C G$ is grenter than $\angle A D C$.
and

$$
\angle B C G=\angle A C D ;
$$

I. 15.
$\therefore \angle A C D$ is greater than $\angle A D C$.
Q. E. D.

Ex. l. From the same point there cannot he drawn more than two equal straight lines to meet a given straight line.

Ex. 2. If, from any point, a straight line be drawn to a given straight line making with it an acute and an obtuse angle, and if, fom the sane point, a perpendicular be drawn to the griven line; the perpendicuher will fall on the side of the acote argle.

Proposithos XVII．Theomam．
Any two angles of a wiancle ure together less than two right angles．

Let $A B C$ be any \triangle ．
I＇hen must any two of its $\angle s$ be together less than two $r t .<s$ ．

Prodnce $B C$ to D ．
Than $\quad \angle A C D$ is greater than $\angle A B C$ ．It： $\therefore \angle \mathrm{s} A C D, A C B$ are towether greater than $\angle \mathrm{s} A B C, A C B$ ． But $\quad \angle \mathrm{s} A C D, A C B$ together $=$ two it．$\angle \mathrm{s} . \quad$ I． $1: 3$
$\therefore \angle \mathrm{s} A B C, A C B$ are thgether less than two rt．$\angle \mathrm{s}$ ．
Similarly it may be shewn that $\angle \mathrm{s} A B C, B A S$ and alsc that $\angle \mathrm{s} B A C, A C B$ are together less than two rt．$\angle \mathrm{s}$ ．

> Q. E. D.

Sore 4．On the Sixth Postulate．
We learr from Prop．xvit．that if two straight lines $B M$ ard $C N$ ，which meet in A ，are met by another straight line $D E$ in the pointis O, P_{2}

A
the angles MOP and NPO are together less than two right angles．

The Sixth Postulate asserts that if a line $D E$ meeting trio other lines $B M, O V$ mikes MOP，NPO，the twe interior
angles on the same side of it, together less than two right angles, $B M$ and $C N$ slill meet if produced on the same side of $D E$ on which are the angles $M O P$ and $N P O$.

Proposition XVIII. Theorem.
If one side of a triangle be grater than a second, the angle opposite the first must be greater than that opposite the second.

In $\triangle A B C$, let side $A C$ be greater than $A B$.
Then must $\angle A B C$ be greater than $\angle A C B$.
From $A C$ cut off $A D=A B$, and join $B D$.
I. 3.

Then

$$
\because A B=A D \text {, }
$$

$$
\therefore \angle A D B=\angle A B D,
$$ I. A.

Aud $\because C D$, a side of $\triangle B D C$, is produced to A.

$$
\begin{equation*}
\therefore \angle A D B \text { is greater than } \angle A C B \text {; } \tag{I. 16}
\end{equation*}
$$

\therefore also $\angle A B D$ is greater than $\angle A C B$.
Much more is $\angle A B C$ greater than $\angle A C B$.
a. E. D.

- Ex. Shew that if two angles of a triangle be equal, the sides which subtend them are equal also (IXucl. I. ©!.

If one angie of a triangle os greater than a second, the sids oppaite the firat misst bs greater than tiat opposite the second.

In $\triangle A B C$, let $\angle A B C$ bu greater than $\angle A C B$.
Inen must $A C$ be greater than $A D$.
For if $A C$ be not greater than $A B$,
$A C$ must either $=A B$, or be less than $A D$.
Now $A C$ cannot $=A B$, for then I. 1.
$\therefore A B C$ would $=\angle A C B$, which is not the case.
And $A C$ cannot le less than $A B$, for then 18. $\angle A D C$ would be less than $\angle A C B$, which is not the case: $\therefore A C$ is greater than $A B$.

> Q E. D.

Ex. 1. In an obtuse-angled triangle, the greatest side is opposito the obtuse angle.

Ex. 2. $B C$, the base of an isnsceles triangle $B A C$, is prodiced to any point D; shew that $A D$ is greater than $A B$.

Ex. 3. The perpendicular is the shortest straight line, which oan be drawn from a given point to a given straight line; and of others, that which is nearer $t \mathrm{n}$ the perpendicular is less than

: ropostion XX. Tithorea.

Any swe sudes of a trangis are together greater than the third ridi.

Let $A B C$ bo a \triangle.
There any two of its sides must be togother greater tiaz: the third side.

Produce $D A$ to D, making $A D=A C$, and join $D C$.
Then
$\because A D=A C$,
$\therefore \therefore A(I)=\angle A D C$, that is, $\angle B D C$.
Now $\angle B C D$ is greater thun $\angle A C D$;
$\therefore \angle B C D$ is also greater than $\angle E D C$;

$$
\therefore D D \text { is greater than } L C \text { ! }
$$

L. 19.

But $B D=B A$ and $A D$ together ; that is, ${ }^{\circ} B D=B A$ and $A C$ together ;
$\therefore B A$ and $A C$ together are greater than $B C$.
Similarly it may be shewn that $A B$ and $D C$ together are greater than $A C$, and $B C$ and $C . \perp$ ΔE.

> Q. E. D.

Ex. 1. Prove that any three sides of a quadrilateral figure are together greater than the fourth side.

Ex. 2. Shew that any side of a triungle is greater than the differe:ce between the other two sides.

Ex. 3. Prove that the sum of the distances of any point from the angular points of a quadriateral is greater thau half the perimeter of the quadrilateral.

Ex. 4. If one side of a triangle be bisected, the sum of the two other sides shall be more than double of the line joining the vertex and the point of bisectinn.

[^1]Proposition XXI. Tieorem.
If, from the ends of the side of a triangle, there be draun two straight lines to a point within the triangle; these will be togethur less than the other sides of the triangle, but will contain a greater angle.

Let $A B C$ be a Δ, and from D, a pt. in the Δ, draw st. lines to B and C.

Then will $B D, D C$ together be less than $B A, A C$, but $\angle B D C$ will be greater than $\angle B A C$.
Produce $B D$ to meet $A C$ in E.
Then $B A, A E$ are together greater than $B E$.
I. 20. Add to each $E C$.
Then $B A, A C$ are together greater than $B E, E C$.
Again, $D E, E C$ are together greater than $D C$.
I. 20.

Add to each $B D$.
Then $B E, E C$ are together greater than $B D, D C$.
And it has been shewn that $B A, A C$ are together greater than $B E, E C$;
$\therefore B A, A C$ are together sreater than $B D_{;} D C$.
Next, $\because \angle B D C$ is greater than $\angle D E C$.
I. 16.
and $\angle D E C$ is greater than $\angle D A C$,
I. 16.
$\therefore \angle B D C$ is greater than $\angle B A C$.
Q. E. D.

Ex. 1. Upon the base $A B$ oi a triangle $A B C$ is described 2quadrilatoral figure $A D E B$, which is entirely within the triangle. Shew that the sides $A C, C B$ of the triangle are together greater than the sides $A D, D E, D B$ of the quadrilateral.

Ex. 2. Shew that the sum of the straight lines, joining the angles of a triangle with a point within the triangle, is less than the perimeter of the triangle, and greater than half the perimeter.

Proposition XXII. Problem.

To make a triangle, of which the sides shall be equal to three given straight lines, any two of which are together greuter than the third.

Let A, B, C be the three given lines, any two of which are together greater than the third.

It is required to make a Δ having its sides $=A, B, C^{\top}$ respectively.
Take a st. line $D E$ of unlimited length.
In $D E$ make $D F=A, F G=B$, and $G H=C$.
With centre F and distance $F D$, describe $\odot D K L$.
With centre G and distance $G H$, describe $\odot H K L$.
Join $F K$ and $G K$.
Then $\triangle K F^{\prime} C$ has its sides $=A, B, C$ respectively. For $F K=F D$;

Def. 13.
$\therefore F K=A$;
and $G K=G H$; Def. 13.
$\therefore G K=C$;
and $F G=B$;
$\therefore a \triangle K F G$ has been described as reqd. Q. E. F.
Ex. Draw an isosceles triangle having each of the equal sides double of the base.

Propostifton XXIIT. Problem.

At a given, point in a given straight line, to male aro angle equal to a given angle.

Lets A he the given nt., $C C$ the given line, $D E F$ the given \angle.

It is reqd. to malie at $\hat{1}$. A an angle $=\angle D E F$.
In $E D, E F$ take any pts. $D . F$; and join $D F$.
In $A B$, produced if necessary, make $A G=D E$.
In $A C$, produced if necessary, make $A H=E F^{\prime}$.
In $H C$, produced if necessary, make $H K=\Gamma D$.
With centre A, and distance $A G$, describe $\odot G L M$.
With centre H, and ristance $H K$, describe $\odot L K M$. Join $A L$ and $T I L$.

$$
\begin{array}{rlr}
\text { Then } \because I . A=A C, \therefore I A=D D ; & \Lambda x .1 . \\
\text { and } \because I I L & =I T K, \therefore M L=T D . & \Lambda x .1 .
\end{array}
$$

Then in $\triangle s$ LATY, DET,

$$
\begin{gathered}
\because I A=D E, \text { and } A H=E \bar{F}, \text { and } I I L=\bar{H} D \\
\therefore \angle L A M=\angle D I F .
\end{gathered}
$$

\therefore an angle $I A I$ has liccn made at pt. A as was reqd.
Q. E. F.

Nore. - We here give the proof oi is theoram, necessary to the proof of Prop. XXIV. and applicable to several pronosicions in Book III.

Proposition D. Theorear.

Every straight line, drawn from the vertex of a triangle to the base, is less than the greate: of the tuo sides, or than either, if they be equal.

In the $\triangle A B C$, let the side $A C$ bo not less than $A B$.
Take unj p̂. D in $B C$, and join $A D$.
Then must $A D$ be less than $A C$.
For $\because \Delta C$ is not less than $A B$;
$\therefore \angle A D D$ is not less tham $\angle A C D$. I. a and 18 .
But $\angle A D C$ is greater than $\angle A D D$;
I. 16.
$\therefore \angle A D C$ is greater than $\angle A C D$;
$\therefore \Delta C$ is greater than $A D$. I. 19.
Q. E. D.

Prorosition XXIV．Theorem．

If two triangles have two sides of the one equal to two sildes of the other，each to cach，lut the angle contained by the two sides of one of them greater than the angle contained by the two siles equal to them of the other；the base of that which has the greater angle must be greater than the base of the other．

In the $\triangle s A B C, D E F$ ， let $A B=D E$ and $A C=D F$ ， and let $\angle B A C$ be greater than $\angle E D F$ ．

Then must BC be greater than EF．
Of the two sides $D E, D F$ let $D E$ be not greater than $D F$ ．＊
At pt．D in st．line $E D$ make $\angle E D G=\angle B A C$ ，
I． 23. and make $D G=A C$ or $D F^{\prime}$ ，and join $E G, G F$ ．
Then $\because A B=D E$ ，and $A C=D G$ ，and $\angle B A C=\angle E D G$ ，

$$
\begin{array}{rlr}
\therefore B C=E G, & \text { I. } 4 . \\
\because D G & =D F, & \text { I. A. }
\end{array}
$$

Again，
$\therefore \angle E F G$ is greater than $\angle D G F$ ； much more then $\angle E F G$ is greater than $\angle E G F$ ；
$\therefore E G$ is greater than $E F$ ．
I． 19.
But $E G=B C$ ；
$\therefore B C$ is greater than $E F$ ．
Q．E．D．
＊This line was added by Simson to obviate a defect in Euclid＇s proof．Without this condition，three distinct cases must be discussed． With the condition，we can prove that F must lie below $E G$ ．
For since $D F$ is not less than $D F$ ，and $D G$ is drawn equal to $D F$ ， $D G$ is not less than IDE．

Hence by Prop．D，any hine drawn from D to meet $E G$ is less than $D G$ ，and therefore $L F$ ，being equal to $D(i$, must extenil beyond $E G$ ．

For another method of proving the Proposition，see p． 113.

Propusimion XXV. Theorem.
If two triangles have two sides of the one equal to two sides of the othcr, each to each, but the base of the one greater than the base of the other; the angle also, contained by the sides of that which has the greater base, must be greater than the angle contained by the sides equal to them of the othcr.

In the $\triangle \mathrm{s} A B C, D E F$, let $A B=D E$ and $A C=D F$, and let $B C$ be greater than $E F$. Then must $\angle B A C$ be greater than $\angle E D F$. For $\angle B A C$ is greater tham, equal to, or less than $\angle E D F$.

Now $\angle B A C$ cannot $=\angle E D F$,
for then, by I. $4, B C$ would $=E F$; which is not the case.
And $\angle B A C^{\prime}$ cannot be less than $\angle E D F{ }^{\prime}$,
for then, by 1. $24, B C$ would be less than $E F$; which is not the case ;
$\therefore \angle B A C$ must be greater than $\angle E D F$.
Q. E. D.

Note.--In Prop. xxvi. Euclid includes two cases, in which two triangles are equal in all respects ; viz., when the following parts are equal in the two triangles:

1. Two angles and the side between them.
2. Two angles and the side opposite one of them.

Of these we have alreadiy proved the first case, in Prop. B, so that we have only the second case left, to form the subject of Prop. xxvi., which we shatl prove by the method of superposition.

For Enclid's proof of Prin. xivi, see PD 114-115.

Erofosetion AXVL Theorem.

If two triangles save tro angics of the one cqual to two angles of the other, each to cach, anal one side equal to one side, those sides being opnosite to equal unglis in cacl? then must the wricngles be equal in all respects.

In $\triangle s A B C, D E F$,
l $s \angle \angle A B C=\angle D E F$, and $\angle A C E=\angle D F E$, and $A B=D E$.
Then must $B C=E F$, and $A C=D F$, and $\angle B A C=\angle E D F$.
Suppose $\triangle D E F$ to be applied to $\triangle A B C$, so that D coincides with A, and $D E$ falls on $A B$.
Then $\because D E=A B, \therefore E$ will coincide with B; and $\because \angle D E F=\angle A B C, \therefore E F$ will fall on $B C$.
Then must F coincide with C : for, if not,
let F fall betweer B and C, at the pt. I. Join $A F I$.
Then

$$
\begin{aligned}
& \because \angle A H B=\angle D F E, \\
& \therefore \angle A H B=\angle A C B,
\end{aligned}
$$

the extr. $\angle=$ the intr. and npposite \angle, which is impossible.
$\therefore F$ does not fall between B and C.
Similarly, it may be shewn that F does not fall on $B C$ produced.

$$
\begin{aligned}
& \therefore F \text { coinclaes with } C \text {, and } \therefore D C=E F \text {; } \\
& \therefore A C=D F \text {, and } \angle B A C=\angle E D F \text {, }
\end{aligned}
$$

and. \therefore the triangles are equal in all respects.
Q. E. D.

Miscellanenus Exerrises nu Props. J. to XXI'T.

1. M is the midite point of the hase $B C$ of an isosceles triangle $A B C$, and N is a point in $A C$. Shew that the difterence between $M B$ and $M S N$ is less than that between $A B$ and $A N$.
2. $A B C$ is a triangle, and the angle at A is hisected by a straight line which meets $B C$ at D; shew that $B A$ is greater than $B D$, and $C A$ greater than CD.
3. $A B, A C$ are straight lines meeting in A, and D is a given point. Draw through D a straight line cutting off equal parts from $A B, A C$.
4. Draw a straight line throngh a given point, to make equal angles with two given straight lines which meet.
5. A given angle $B A C$ is bisected ; if $C A$ he produced to G and the angle $B A G$ bisected, the two bisecting lines are at right angles.
6. Two straight lines are drawn to the base of a triangle from the vertex, one hisecting the vertical angle, and the other bisecting the base. Prove that the latter is the greater of the two lines.
7. Shew that Prop. xvir. may be proved without producing a side of the triangle.
8. Shew that Prop. xumi may be proved lis means of the following construction : eut off $A D=A D$, draw $A E$, bisecting $\angle B A C$ and meeting $B C$ in E, and join $D E$.
9. Shew that Prop. xx. can be provel, without producing one of the sides of the triangle, by bisecting one of the angles.
10. Given two angles of a triangle and the side adjacent to them, construct the triangle.
11. Shew that the perpendiculars, let fill on two sides of a triangle from any point in the straight line bisecting the angle contained by the two sides, are equal.

We conclade Section I, with the proot (omitted by Euclidi) of another case in which two triangles are equal in all respects.

Proposition E. Thenem.

If two triangles have one angle of the one equal to one angle of the other, and the sidcs about a second anyle in each equal: then, if the thiod angles in cach be both ucute, both obtuse, or if one of theni be a right angle, the triamglea are equal in all respects.

In the $\triangle \mathrm{s} A B C, D E F$, let $\angle B A C=\angle E D F, A B=D E$, $B C=E F$, and let $\angle \mathrm{s} A C B, D F E$ be both acute, both obtuse, or let one of them be a right angle.

Then must $\triangle s A D C, D E F$ be equal in all ressects.
For if $A C$ be not $=D F$; make $A G=D F$; and join $B G$.
Then in $\triangle \mathrm{s}$ BAG, EDF',
$\because B A=E D$, and $A G=D F$, and $\angle B A G=\angle E D F$,

$$
\therefore B G=E F \text { and } \angle A G B=\angle D F E .
$$

I. 4.

But $B C=E F$, and $\therefore B G=B C$;

$$
\therefore \angle B C G=\angle B G C .
$$

First, let $\angle A C B$ and $\angle D F E$ be both aeute,
then $\angle A G B$ is acute, and $\therefore \angle B G C$ is obtuse; I. 12.
$\therefore \angle B C G$ is obtuse, which is contrary to the hypothesis.
Next, let $\angle A C B$ and $\angle D F E$ be both obtuse,
then $\angle A G B$ is obtuse, and $\therefore \angle B G C$ is acute ; I. 13.
$\therefore \angle B C G$ is acute, which is contrary to the hypothesis.

Lastly, let one ci the third anglos $A C B$, DFE be a right angle.

If $\angle A C B$ be a rt. \angle.
then $\angle B G C$ is also a rt. \angle;
I. A.
$\therefore \angle \mathrm{s} B C G, B G C$ togetheretwo rt. $\angle \mathrm{s}$, which is impossible.
I. 17.

Again, if $\angle D F E$ be a rt. \angle, then $\angle A G B$ is a rt. \angle, and $\therefore \angle B G C$ is a rt. \angle. I. 13.
Hence $\angle B C G$ is also a rt. \angle.
$\therefore \angle \mathrm{s} B C G, B G C$ together $=$ two $\mathrm{rt} . \angle \mathrm{s}$, which is impossible.
Hence $A C$ is equal to $D F$, and the $\triangle s A B C, D E F$ are equal in all respects.

> Q. E. D.

Cor. From the first case of this proposition we deduce the following important theorem :
If two right-angled triamgles have the hypotenuse and one side of the one equal respectively to the hipotenuse and me side of the other, the triangles are equai in all respects.

Note. In the enunciation of Prop. e, if, instead of the words if one of them be a right angle, we put the words both. right anglos, this caso of the pronosition would be identical with I. 26.

SECTION II.

The Theory of Parallat Lines.

LATRODUCTION.

We have detached the Propositions, in which Euclid treats of Parallel Lines, iron those which precede and follow them in the First Book, in order that the student may have a clearer notion of the difficulties attending this division of the subject, and of the way in which Euclid propuses to meet them.

We must first explain some techuical terms used in this Section.

If a straight line $E F$ ent two other straight lines $A B, C I$, it makes with thoso lines eight angles, to which particular names are given.

The angles numbered 1, 4, 6, 7 are called Interior angles. $2,3,3,8$

Exterior
The angles marked 1 and 7 are called alternate angles.
The angles marked 4 and 6 are also called alternate angles.
The pairs of angles 1 and 5,2 and 6,4 and 8,3 and 7 aro called corresponding angles.

Note. From I. 13 it is clear that the angles $1,4,6,7$ are together equal to four right angles.

Book I.]

Proposition XXVIi. Taeorem.

If a straight line, falling upon two other siraight lines, make the alternate angles equal to one another; thes two straight lincs must be parallel.

Let the st. line $E F$, falling on the st. linis $A B, C D$, make the alternate $\angle \mathrm{s} A G H, G I I D$ equal.

Then must $A B$ be \|to $C D$.
For if not, $A B$ and $C D$ will meet, if produced, either torrards B, D, or towards A, C.

Let them be produced and meet towards B, D in K.
Then $G H K$ is a Δ;

$$
\text { and } \therefore \angle A G H \text { is greater than } \angle G E D D \text {. I. } 16 .
$$

But

$$
\angle A G H=\angle G D D,
$$

which is impossible.
$\therefore A B, C D$ do not meet when produced towards B, D.
In like manner it may be shewn that they do not meet wheu produced towards A, C.

$$
\therefore A B \text { and } C D \text { are parallel } \quad \text { Def. } 26 .
$$

Proposimon XXVIll. 'Theorem.

If a straight line, falling upon, two other straight lines, make the esterior angle equal to the interior and opposite upon the same side of the line, or make the interior angles upon the same. side together equal to two right angles; the two straight lines are parallel to one another.

Let, the st. line $E F$, falling on st. lines $A B, C D$, make
I. $\angle E G B=$ corresponding $\angle G H D$, or
II. $\angle \mathrm{s} B G H, G H D$ together $=$ two rt. $\angle \mathrm{s}$.

Then, in either case, $A B$ must be $\|$ to $C D$.
I. $\because \angle E G B$ is given $=\angle C H D$, Hyp.
and $\angle E G B$ is known to be $=\angle A G H, \quad$ I. 15 .
$\therefore \angle A G H=\angle G H D ;$
and these are alternate $\angle \mathrm{s}$;
$\therefore A B$ is $\|$ to $C D$. I. 27 .
II. $\quad \because \angle \mathrm{s} B G H, G H D$ together=two rt. $\angle \mathrm{s}, \quad$ Hyp. and $\angle \mathrm{s} B G H, A G H$ together $=$ two rt. $\angle \mathrm{s}, \quad$ I. 13.
$\therefore \angle B G H, A G H$ together $=\angle \mathrm{s} B G I I, G H D$ together ;
$\begin{array}{rlr}\therefore & \angle A G H=\angle C H D ; \\ & \therefore A B \text { is } \| \text { to } C D . & \text { I. } 27 .\end{array}$
Q. x. D.

Note 5. On the Sixth Postulatc.

In the place of Euclid's Sixth Postulate many modern Writers on Geometry propose, as moro evident to the menses, the tollowing Postulate :-
*T'wo straight lines which cut one another cannot Both be [arallel to the same straight line."

If' this be assumed, we can prove Post. 6, as a 'Theorem, thus:

Let the line $E F$ falling on the lines $A B, C D$ make the $\angle s$ $\operatorname{li}+H, G H D$ together less than two rt. $\angle \mathrm{m}$. Then must $A B$, C'D meet when produced towards B, D.

For if not, suppose $A B$ and $C D$ to be parallel. Then $\because \angle \mathrm{s} A G H, B G H$ together=two rt. $\angle \mathrm{s}$, I. 13. and $\angle \mathrm{s} G H D, B G H$ are together less than two rt. $\angle \mathrm{s}$,

$$
\therefore \angle A G H \text { is greater than } \angle G H D \text {. }
$$

Make $\angle M G H=\angle G H D$, and produce $A i C^{\prime}$ to A.
Then \because the alternate $\angle \mathrm{s} M G H, G H D$ are equal,

$$
\therefore M N \text { is } \| \text { to } C D \text {. }
$$

1. 27.

Thus two lines $M N$, . B which cut one another are both parallel to $C D$, which is impossible.
$\therefore A B$ and $C D$ are not parmllel.
It is also clear that they meet towards B, D, because $G D$ Lies between $G N$ and $H D$.

Proposition XXIX. 'Theokem.
If a straight line fall upon two parallel straight lines, it makes the two interior angles upon the same side together equal to tuo right angles, und also the alternate angles equal to one another, and ulos the exterion angle equal to the interior and orposite upon the same side.

Let the st. line $E F$ fall on the parallel st. lines $A B, C D$.
Then must
I. $\angle \mathrm{s} B G H$. $G H D$ together $=$ two $\mathrm{rt} . \angle \mathrm{s}$.

I1. $\angle A G H=$ alternate $\angle G H D$.
III. $\angle E G B=$ corresponding $\angle G H D$.
I. $\angle \mathrm{s} B G H, G H \nu$ cannot he together less than two rt. $\angle \mathrm{s}$, for then $A B$ and $C D$ would meet if produced towards B and D,

Post. 6.
which cannot be, for they are parallel.
Nor can $\angle \mathrm{s} B G H, G H D$ be together greater than two rt. $\angle \mathrm{s}$, for then $\angle \mathrm{s} A G H, G H C$ would be tngether less than two rt. $\angle \mathrm{s}$, I. 13. and $A B, C D$ would meet if produced towards A and C Post. 6
which cannot he, for they are parallel,
$\therefore \angle \mathrm{s} B G H, G H D$ together $=$ two $\mathrm{rt} . \angle \mathrm{s}$.
I1. $\because \angle \mathrm{s} B G H, G H D$ tomether $=t$ oro rt. $\angle \mathrm{s}$, and $\angle \mathrm{s} B C H, A C H$ together $=\mathrm{tw} 0 \mathrm{rt} . \angle \mathrm{s}, \quad$ I. 13.
$\therefore \angle \mathrm{s} B G H, A G H$ torether $=\angle \mathrm{s} B G H, G H D$ together, and $\therefore \angle A G H=\angle G H D$.

Ax. 3.
III. $\because \angle A G H=\angle G H D$,
and $\angle A G H=\angle E G B$,
I. 15.
$\therefore \angle E G B=\angle G H D$.
$\Delta x .1$
O. E. D.

Exencista.

1. If through a point, equidistant from two parallel straight lines, two straight lines be drawn euting the parallel straight lines; they will intercept equal portions of the parallel lines.
2. If a straight line be drawn, bisecting one of the angles of a trimgle, to meet the opposite side; the straight lines drawn from the print of section, pazallel to the other sides and terminated by those sides, will be equal.
3. If any straight line joining two parallel straght lines be bisected, any other straght line, drawn through the point of bisection to meet the two lmes, will be hisected in that point.

Note. One Thenrem (A) is said to be the converse of another Theorem (B), when the hypothesis in (A) is the conclusion in (B), and the conclusion in (A) is the hypothesis in (B).

For example, the Theorem I. A. nay be stated thus:
Iypothesis. If two sides of a tringle be equal.
Conclusion. The angles opposice those sides must also be equal.

The converse of this is the Theorem I. B. Cor.:
$\Pi y p o t h e s i s$. If two angles of a triangle be equal.
Conclusion. The sides opposite those angles must also bo equal.

The following are other instances :
Postulate vi, is the converse of I. 12.
I. 29 is the converse of 1.27 and 22.
I. 13. ther, Ax. 3.
I. 15. $\Delta \mathrm{x} .1$

Proposition XXX．＇Theorem．
Straight lines which are parallel to the same straight line ars parallel to one another．

Let the st．lines $A B, C D$ be each \｜t to $E F$ ．
Then must $A B$ be \｜to $C D$ ．
Draw the st．line $\forall \because H$ ，cutting $A B, C D, E F$ in the pts． O, P, Q ．

Then $\because G H$ cuts the $\|$ lines $A B, E F$ ，

$$
\therefore \angle A O P=\text { alternate } \angle P Q F \text {. }
$$

And $\because G H$ cuts the $\|$ lines $C D, E F$ ，
\therefore extr．$\angle O P D=$ intr．$\angle P Q F ; \quad$ I． 29.
$\therefore \angle A O P=\angle O P D$ ；
and these are alternate angles；
$\therefore A B$ is $\|$ to $C D$
I． 27.
Q．E．D．
The following Theorems are important．They admit of easy proof，and are therefore left as Exercises for the student．

1．If two straight lines be parallel to two other straight lines，each to each，the first pair make the sane angles with one another as the second．
2．If two straight lines be perpendicular to two other straight lines，each to each，the first pair make the same angles with one another as the second．

Proposimion XXXI. Problem.

To draw a straight line through a given point parallel to a given straight line.

Let A be the given pt. and $B C$ the given st. line.
It is required to draw through A ast. line \|to $B C$.
In $B C$ take any pt. D, and join $A D$.

$$
\text { Make } \angle D A E=\angle A D C \text {. }
$$

I. 23.

Produce $E 4$ to F. Then $E F$ shall be II to $B C$.
For $\because b$,eeting $E F$ and $B C$, makes the alternate angles equal, that is, $\angle E A D=\angle A D C$,

$$
\therefore E F \text { is } \| \text { to } B C \text {. }
$$

\therefore a st. line has been drawn through $A \|$ to $B C$.

> Q. Е. F.

Ex. 1. From a given point draw a straight line, to make an angle with a given straight line that shall be equal to a given angle.

Ex. 2. Through a given point A draw a straight line $A B C$, meeting two parallel straight lines in B and C, so that $B C$ may be equal to a given straight line.

Proposition XXXII. Telorem.

If a side of any triangle be produced, the exterior angls is equal to the two interior and opposite angles, and the three interior angles of every triangle are together equal to two right anyles.

Let $A B C$ be a \triangle, and let one of its sides, $B C$, be produced to D.

Then will
I. $\angle A C D=\angle \mathrm{s} A B C, B A C$ together.
II. $\angle \mathrm{s} A D C, D A C, A C D$ together $=$ two 1 t. $\angle \mathrm{s}$.

$$
\text { From } C \text { danv } C P \| \text { to } A B .
$$

I. 21.

Then I. $\because E D$ meets the $: s C, A B$,
\therefore extr. $\angle E C D=$ intr. $\angle A E C . \quad$ I. 29.
And $\because A C$ meets the $\|: E C, A B$,
$\therefore \angle A C E=$ alternate $\angle D A C$. I. 29.
.. $\angle \mathrm{s} E C D, \angle C E$ together $=\angle s A D C, B A C$ together ;
$\therefore \angle A C D=\angle \mathrm{s} A D C, D A C$ together.
And II. $\because \angle \mathrm{s} A D C, B A C$ tngether $=\angle A C D$, to cach of these cquals add $\angle A C B$;
then $\angle S A D C, B A C, A C D$ together $=\angle S A C D, A C B$ toge her, $\therefore \angle s A D C, D \perp C, A C D$ together=two rt. $\angle \mathrm{s}$. I. 13.
Q. E. D.

Ex. 1. In an acute-angled triangle, any two angles are greater than the third.

Ex. 2. The straight line, which bisects the external vertical angle of an isosceles triangle is parallel to the base.

Ex. 3. If the side $B C$ of the triangle $A B C$ be produced to D, and $A E$ be drawn bisectimg the angle $B A C$ and meeting $B C$ in D; shew that the angles $A B D, A C D$ are tugether double of the angle $A E D$.

Ex.4. If the straight lines bisecting the angles at the base of an isosceles triangle be produced to meet; shew that they will contain an angle equal to an exterior angle at the base of the triangle.

Ex. 5. If the straight line bisecting the external angle of a triangle be parallel to the base; prove that the triangle is isosceles.

The following Corollaries to Prop. 32 were first given in Simson's Edition of Euclid.

Con. 1. The sum of the interior angles of any rectilincar figure together with four right angles is equal to twice as many right angles as the figure has sides.

Let $A B C D E$ be any rectilinear figure.
Take any pt. F within the figure, and from F draw the st. lines $F \dot{A}, F B, F C, F D, F E$ to the angular pts. of the figure

Then there are formed as many $\angle S$ as the figure has sides.

The three $\angle \mathrm{s}$ in each of these $\Delta \mathrm{s}$ together $=$ two rt. $\angle \mathrm{s}$.
\therefore all the $\angle s$ in these Δs together=twice as many right $\angle s$ as there are $\angle s$, that is, twice as many rinht $\angle s$ as the figure has sides.

Now angles of all the $\Delta \mathrm{s}=\angle \mathrm{s}$ at A, D, C, D, E and $\angle \mathrm{s}$ at F,
that is, $\quad=\angle \mathrm{s}$ of the furure ond $\angle \mathrm{s}$ at F, and $\therefore \quad=\angle \mathrm{s}$ of the figure and four $\quad \angle \mathrm{s} . \quad$ I. 15 . Cor. 2
$\therefore \angle \mathrm{s}$ of the flyme and four $\mathrm{rt} . \angle \mathrm{s}=\mathrm{twice}$ as many $\mathrm{rt} . \angle \mathrm{s}$ as the figure has sides.

Cor. 2. The exterior angles of any convex rectilinear figure, madc by producing each of its sides in succession, are together equal to four right angles.

Every interior angle, as $A B C$, and its adjacent exterior angle, as $A B D$, together are $=$ two $\mathrm{rt} . \angle \mathrm{s}$.

\therefore all the intr. $\angle \mathrm{s}$ together with all the extr. $\angle \mathrm{s}$ $=$ twice as many rt. $\angle \mathrm{s}$ as the figure has sides.
But all the intr. $\angle \mathrm{s}$ together with four rt. $\angle \pi$ $=t$ wice as many rt. $\angle \mathrm{s}$ as the figure has sides.
\therefore all the intr. $\angle \mathrm{s}$ together with all the extr. $\angle \mathrm{s}$ $=$ all the intr. $\angle \mathrm{s}$ together with four $\mathrm{rt} . \angle \mathrm{s}$.

$$
\therefore \text { all the extr. } \angle \mathrm{s}=\text { four } \mathrm{rt} . ~ \angle \mathrm{~s} \text {. }
$$

Note. The latter of these corollaries refers only to convex figures, that is, figures in which every interior angle is less than two right angles. When a figure contains an angle greater

than two right angles, as the angle marked by the dotted line in the diagram, this is called a reflex angle. See p. 149.

Ex. 1. The exterior angles of a quadrilateral made by producing the sides successively are together equal to the interior angles.

Ex. 2. Prove that the interior angles of a hexagon are equal to eight right angles.
Ex. 3. Shew that the angle of an equiangular pentagon is : $\frac{6}{5}$ of a right angle.

Ex. 4. How many sides has the rectilinear figure, the sum of whose interior angles is double that of its exterior angles?

Ex. 5. How many sides has an equiangular polygon, four of whose angles are together equal to seven right angles?

Proposition XXXIII. Theorem.

The straight lines which join the extremities of two equal and parallel straight lines, towards the same parts, are also thenselves equal and parallel.

Let the equal and \|s. lines $A B, C D$ be joined towards the same parts by the st. lines $A C, B D$.

Then must $A C$ and $B D$ be equal and $\|$.

$$
\text { Join } B C \text {. }
$$

Then $\quad \because A B$ is $\|$ to $C D$,

$$
\therefore \angle A B C=\text { alternate } \angle D C B .
$$

I. 29.

Then in $\triangle s A B C, B C D$,
$\because A B=C D$, and $B C$ is common, and $\angle A B C=\angle D C B$,

$$
\therefore A C=B D, \text { and } \angle A C B=\angle D B C . \quad \text { I. } 4 .
$$

Then $\because B C$, meeting $A C$ and $B D$, makes the alternate $\angle s A C B, D B C$ equal, $\therefore A C$ is $\|$ to $B D$.
Q. E. D.

Miscellaneous Exerciscs on Dections 1. and II.

1. Jf two exterior angles of a triangle be bisected by straight lines which meet in O; prove that the perpendiculars from O on the sides, or the sides produced, of the triangle are equal.
2. Trisect a right angle.
3. The bisectors of the three angles of a triangle meet in one point.
4. The perpendiculars to the three sides of a triangle drawn from the middle points of the siles meet in one point.
5. The aurle betwren the bisector of the angle $D A C$ of the triangle $A B C$ and the perpentiontar from A on $B C$, is equal to half the difference between the angles at l and C.
6. If the straight line $A D$ bisect the angle at A of the triangle $A B C$, and $B D F$ be drawn perpendicular to $A D$, and meeting $A C$, or $A C$ produced, in L; shew that $B D$ is equal to $D E$.
7. Divide a right-angled triangle into two isosceles triangles.
8. $A B, C D$ are two given straight lines. Through a point E between theur draw a strainht line $G E H$, such that the intercepted portion $G: M$ shall be bisected in E.
9. The vertical angle O of a triangle $O P Q$ is a right, acute, or obtuse angle, according as $O R$, the line bisecting $P Q$, is equal to, greater or less than the half of $P Q$.
10. Shew by meatis of Ex. 9 how to draw a perpendicular to it given straight line from its extremity without producing it.

SECTION III.

On the Equality of Rectilinear Figures in respect of Area.

The amount of space enclosed by a Figure is called the Aren of that figure.

Euclid calls two figures equal when they enclose tho same amount of space. They may be dissimilar in shape, but if the ateas contained within the boundaries of the fignres be the same, then he calls the figures equal. He regards a triangle, for example, as a figure having sides and angles and area, and he proves in this section that two triangles may have equality of area, though the sides and angles of each may be unequal.

Coincidence of their boundaries is a test of the equality of all geometrical magnitudes, as we explained in Note 1, page 14.

In the case of lines and angles it is the only test: in the case of figures it is a test, but not the ouly test ; as we shall shew in this Section.
'The sign $=$, standing between the symbols denoting two figures, must be read is equal in area to.

Before we proceed to prove the Propositions included in this Section, we must complete the list of Definitions required in Book I., continuing the numbers pretixed to tho definitions in paye 6.

Definitions.
XXVII. A Parallelooram is a four-sided figure whose opposite sides are parallel.

For brevity we often designate a parallelogram loy two letters only, which mark opposite angles. Thus we call the figure in the margin the parallelogram $A C$.
XXVIII. A Rectangle is a parallelogram, having one of its augles a right angle.

Hence by I. 29, all the angles of n rectangle are right, angles.
XXiX. A Rhombus is a parallelogram, having its sides cqual.

XXX. A Square is a parallelogram, having its sides equal and one of its angles a right angle.

Hence, by I. 29, ail the angles of a square are right angles.
XXXI. A Trapezium is a four-sided figure of which two sides only are parallel.

XXXII. A. Diagonal of a fonr-sided figure is the straight line foining twe of the npposita nencular points.

Book 1.] EXERCISES ON DEFIN/TIONS 27-33.
XXXIII. The Almitude of a Parallelogram is the perpendicular distance of one of its sides from the side opposite, regarded as the Lase.

The altitude of a triangle is the perpendicular distance of one of its angular points from the side opposite, regarded as the base.

Thus if $A B C D$ be a parallelogram, and $A E$ a perpendicular let fall from A to $C D, A E$ is the altitude of the parallelogram, and also of the triangle $A C D$.

If a perpendicular be let fall from B to $D C$ produced, meeting $D C$ in $F, B h^{\prime}$ is the altitude of the parallelogram.

Exercises.

Prove the following theorems:

1. The diacronals of a square make with each of the sidem an ancle equal to half a right augle.
2. If two straight lines bisect each other, the lines joining their extremities will form a patallelogram.
3. Straight lines bisecting two adjacent angles of a parallelogram intersect at right angles.
4. If the straight lines joining two opposite angular points of a parallelogram bisect the angles, the parallelogram has all its sides equal.
5. If the opposite anchles of a quadrilateral be equal, the quadrilateral is a parallelogram.
6. If two opposite sides of a quadrilateral figure be equal to one another, and the two remaining sides be also equal to one another, the figute is a parallelogram.
7. If one angle of a rhombus be equal to two-thirds of two right angles, the diacronal drawn from that angular point divides the rhombus into two equilateral triangles.

Prorostho: XXIIV. Theonem.
The npnositc siles and angles of a parallologram are equal to one another, and the diagonal bisects it.

Let $A B D C$ be a \square, and $B C$ a diagonal of the \square.
Tien must $\quad A B=D C$ and $A C=D B$,
an: $\angle B A C=\angle C D B$, and $\angle A B D=\angle A C D$
and

$$
\triangle A B C=\triangle D C B .
$$

For $\because A B$ is $\|$ to $C D$, and $B C$ meets them,

$$
\therefore \angle A B C=\text { alternate } \angle D C D,
$$

and $\because A C$ is $\|$ to $B D$, and $E C$ meets them,

$$
\therefore \angle A C B=\text { alternate } \angle D D C \text {. }
$$

I. 29.

Then in $\triangle \mathrm{s} A B C, D C B$,

$$
\because \angle A B C=\angle D C D \text {, and } \angle A C D=\angle D D C \text {, }
$$

and $D C$ is common, a side aljicent to the equal $\angle \mathrm{s}$ in each;

$$
\begin{gathered}
\therefore A D=D C, \text { and } A C=D B,: \text { nd } \angle B A C=\angle C D B, \\
\text { and } \triangle A B C=\triangle D C B .
\end{gathered}
$$

Al $30 \because \angle D C=\angle D C D$, and $\angle D B C=\angle A C D$,
$\therefore \angle \mathrm{s} A B C, D B C$ together $=\angle \mathrm{s} D C D, A C B$ together, that is,

$$
\angle A B D=\angle A C D .
$$

> Q. E. D.

Ex. 1. Shew that the diagonals of a parallelogram bisect each other:

Ex. 2. Shew that the diagonals of a rectangle are equal.

Proposition XXXV. Theorem.
Parallelograms on the same bass and between the same parallels are equaí.

Let the $\square \mathrm{s} A B C D, E B C F$ be on the same base $B C^{\prime}$ and between the same $\| \mathrm{s} A F, B C$.

Then must $\square A B C D=\square E B C F$.
Case I. If $A D, E F$ have no point common to both, Then in the $\triangle s F D C, E A B$,

$$
\begin{aligned}
\because \text { extr. } \angle F D C=\text { intr. } \angle F A B, & \text { I. } 29 . \\
\text { and intr. } \angle D F C=\text { extr. } \angle A E B, & \text { I. } 29 . \\
\text { and } D C=A B, & \text { I. } 34 . \\
\therefore \triangle F D C=\triangle E A B . & \text { I. } 26 .
\end{aligned}
$$

Now $\square A B C D$ with $\triangle F D C=$ figure $A B C F$;
and $\square E B C F$ with $\triangle E A B=$ figure $A B C E$;
$\therefore \square A B C D$ with $\triangle F D C=\square E B C F$ with $\triangle E A B$;
$\therefore \square A B C D=\square E B C F$.

CASE II. If the sides $A D, E F$ overlap one another,

the same method of proof applies.

Case III. If the sides opposite to $B C$ be terminated in the same point D,

the same method of proof is applicable, but it is easier to reason thus:
Each of the $\square \mathrm{s}$ is double of $\triangle B D C$; I. 34 . $\therefore \square A B C D=\square D B C F$.
Q. E. D.

Proposition XXXVI. Theorem.
Parallelograms on equal bases, and between the same parallels, are equal to one another.

Let the \square s $A B C D, E F G H$ be on equal bases $B C, F G$, and between the same $\| s A H, B G$.

> Then must $\square A B C D=\square E F G H$. Join $B E, C H$.

Then

$$
\because B C=F G
$$

Hyp. and $E H=F G$; I. 34.
$\therefore B C=E H$;
and $B C$ is $\|$ to $E I I$. Нур.

$$
\therefore E B \text { is } \| \text { to } C H ;
$$

$$
\text { I. } 33 .
$$

$\therefore E B C H$ is a parallelogram.
Now $\square E B C H=\square A B C D$,
\because they are on the same base $B C$ and between the same $\| s$; and $\square E B C H=\square E F G H$, I. 35.

- they are on the same base $E H$ and between the same $\| \mathrm{s}$,
$\therefore \square A B C D=\square E F G H$.
Q. E. D.
I. 34.
E. D.
same

Proposition XXXVII. Theorem.

Triangles upon the same base, and betwceen the same parallels, are equal to one another.

Let $\triangle s A B C, D B C$ be on the same base $B C$ and between the same $\| \mathrm{s} A D, B C$.

$$
\text { Then must } \triangle A B C=\triangle D B C \text {. }
$$

From B draw $B E \|$ to $C A$ to meet $D A$ produced in E.
From C draw $C F \|$ to $B D$ to meet $A D$ produced in F.
Then $E B C A$ and $F C B D$ are parallelograms,

$$
\text { and } \square E B C A=\square F C B D
$$

\because they are on the same base and between the same \|s.

Now | $\triangle A B C$ is half of $\square E B C A$, | I. 34. |
| :---: | ---: |
| and $\triangle D B C$ is half of $\square F C B D ;$ | I. 34. |
| $\therefore \triangle A B C=\triangle D B C$. | Ax. 7. |
| Q. E. D. | |

Ex. 1. If P be a point in a side $A B$ of a parallelograin $A B C D$, and $P C, P D$ be joined, the triangles $P A D, P B C$ are together equal to the triangle $P D C$.

Ex. 2. If A, B be points in one, and C, D points in another of two parallel straight lines, and the lines $A D, B C$ intersect in E, then the triangles $A E C, B E D$ are cqual.

Proposition XXXVIII. Theorem.
Triangles upon equal bases, and between the same parallels, are equal to one another.

Let $\triangle s A B C, D E F$ be on equal bases, $B C, E F$, and between the same $\| \mathrm{s} B F, A D$.

Then must $\triangle A B C=\triangle D E F$.
From B draw $B G \|$ to $C A$ to meet $D A$ produced in G.
From F draw $F H \|$ to $E D$ to meet $A D$ produced in H.
Then $C G$ and $E H$ are parallelograms, and they are equal,
\because they are on equal bases $B C, E F$, and between the same \|s $B F, G H$.
I. 36

> Now $\triangle A B C$ is half of $\square C G$ and $\triangle D E F$ is half of $\square E H ;$ $\therefore \triangle A B C=\triangle D E F . \quad$ Ax. 7. Q. E. D.

Ex. 1. Shew that a straight line, drawn from the vertex of a triangle to bisect the base, divides the triangle into two equal parts.

Ex. 2. In the equal sides $A B, A C$ of an isosceles triangle $A B C$ points D, E are taken such that $B D=A E$. Shew that the triangles $C B D, A B E$ are equal.

Proposition XXXIX. Theorem.
Equal triangles upon the same base, and upon the same side of it, are between the same parallels.

Let the equal $\triangle \mathrm{s} A B C, D B C$ be on the same base $B C$, and on the same side of it.

$$
\text { Join } A D
$$

Then must $A D$ be $\|$ to $B C$.
For it not, through A draw $A O \|$ to $B C$, so as to meet $B D$. or $B D$ produced, in 0 , and join $O C$.

Then $\because \triangle$ s $A B C, O B C$ are on the same base and between the same $\| \mathrm{s}$,

$$
\begin{aligned}
\therefore & \Delta A B C=\Delta O B C . \\
& \Delta A B C=\triangle D B C ;
\end{aligned} \quad \text { I. } 37 .
$$

But

$$
\therefore \triangle O B C=\triangle D B C
$$

the less $=$ the greater, which is impossible ;
$\therefore A O$ is not il to $B C$.
In the same way it may be shewn that no other line passing through A but $A D$ is $\|$ to $B C$;
$\therefore A D$ is $\|$ to $B C$.

Q. E. D.

Ex. 1. $A D$ is parallel to $B C ; A C, B D$ meet in $E ; B C$ is produced to P so that the triangle $P E B$ is equal to the triangle $A B C$: shew that $P D$ is parallel to $A C$.

Ex. 2. If of the four triangles into which the diagonals divide a quadrilateral, two opposite ones are equal, the quadrilateral has two opposite sides parallel.
к. Re.

I'roposition XL. Theorfm.

Equal triangles upon equal bases, in the same straight line, and towards the same parts, are between the same parallels.

Let the equal $\triangle \mathrm{s} A B C, D E F^{\prime}$ be on equal hases $B C, E F$ in the same st. line $B F$ and towards the same parts.

$$
\text { Join } A D .
$$

Then must $A D$ be $\|$ to $B F$.
For if not, through A draw $A O \|$ to $B F$, so as to meet $E D$, or $E D$ produced, in 0 , and join $O F$.

Then $\triangle A B C=\triangle O E F, \because$ they are on equal bases and between the same \|s. \quad I. 38.

But

$$
\triangle A B C=\triangle D E F ;
$$

Hyp. $\therefore \triangle O E F=\triangle D E F$,
the less $=$ the greater, which is impossible. $\therefore A O$ is not $\|$ to $B F$.
In the same way it may be shewn that no other line passing through A but $A D$ is \| to $B F$,
$\therefore A D$ is $\|$ to $B H^{\prime}$.
Q. E. D.

Ex. 1. The straight line, joining the points of bisection of two sides of a triangle, is parallel to the base, and is equal to half the base.

Ex. 2. The straight lines, joining the middle points of the sides of a triangle, divide it into four equal triangles.

Proposition XLI. Theonem.

If a parallelogram and a triangle be upon the same base, and between the same paralicls, the parallelogram is double of the triangle.

Let the $\square A B C D$ and the $\triangle E B C$ be on the sane base $B C^{\prime}$ and between the same $\| \mathrm{s}, A E, B C$:

Then must $\square A B C D$ ive doudle of $\triangle E E C$.

Join AC:

Then $\triangle A B C=\triangle E B C, \because$ they are on the same base and between the same $\| \mathrm{s}$;
I. 37.
and $\square A B C D$ is double of $\triangle A E C, \because A C$ is a diagonal of $A B C D$; I. 34.
$\therefore \square A B C D$ is double or $\triangle E D C$.
Q. E. D.

Ex. 1. If from a point, withont a parallelogram, there be drawn two straight lines to the extremities of the two opposite sides, between which, when produced, the point does not lie, the difference of the trimules thus formed is equal to half the parallelogram.

Ex. (2. The two triangles, formed by drawing straight lines from any point within a parallelogram to the extremities of its opposite sides, are together half of the parallelogram.

Proposition XLII. Problem.
To describe a parallelngram that shall be equal to a given triungle, and have one of its angles equal to a given angle.

Let $A B C$ be the given \triangle, and D the given \angle.
It is required to describe a \square equal to $\triangle A B C$, having one of $i t s \angle s=\angle D$.

$$
\begin{array}{cl}
\text { Bisect } B C \text { in } E \text { and join } A E . & \text { I. } 10 . \\
\text { At } E \text { make } \angle C E F=\angle D . & \text { I. } 23 .
\end{array}
$$

Draw $A F G \|$ to $B C$, and from C draw $C G \|$ to $E F$.
Then FECG is a parallelogram.
Now $\triangle A E B=\triangle A E C$,
\because they are on equal bases and between the same \|ls. I. 38.
$\therefore \triangle A B C$ is double of $\triangle A E C$.
But $\square F E C G$ is double of $\triangle A E C$,
\because they are on same base and between same $\|$ s. I. 41.

$$
\therefore \square F E C G=\triangle A B C \text {; }
$$

Ax. 6.
and $\square F E C G$ has one of its $\angle \mathrm{s}, C E F=\angle D$.
$\therefore \square$ FECG has been described as was reqd.
Q. E. F.

Ex. 1. Describe a triangle, which shall be equal to a given parallelogram, and have one of its angles equal to a given rectilineal angle.
Ex. 2. Construct a parallelogram, equal to a given triangle, and such that the sum of its sides shall be equal to the sum of the sides of the triangle.

Ex. 3. The perimeter of an isosceles triangle is greater than the perimeter of a rectangle, which is of the same altitude with, and equal to, the given triangle.

Proposition XLIII. Theorem.
The complements of the parallelograms, which are about the cliameter of any parallelogram, are equal to one another.

Let $A B C D$ be a \square, of which $B D$ is a diagonal, and $E(r, H K$ the $\square s$ about $B D$, that is, through which $B D$ passes,
and $A F, F C$ the other $\square \mathrm{s}$, which make up the whole figure $A B C D$,

$$
\text { and which are } \therefore \text { called the Complements. }
$$

Then must complement $A F=$ complement $F C$.

$$
\begin{align*}
& \text { For } \because B D \text { is a diagonal of } \square A C \text {, } \\
& \therefore \triangle A B D=\triangle C D B \text {; } \\
& \text { I. } 34 . \\
& \text { and } \because B F \text { is a diagonal of } \square H K \text {, } \\
& \therefore \triangle H B F=\triangle K^{*} F B \text {; } \\
& \text { I. } 34 . \\
& \text { and } \because F D \text { is a diagonal of } \square E G \text {, } \\
& \therefore \triangle E F D=\triangle G D F \text {. }
\end{align*}
$$

Hence sum of $\triangle \mathrm{s} H B F, E F D=\mathrm{sum}$ of $\triangle \mathrm{s} K H^{\prime} D, G 1 P F$.
Take these equals from $\triangle \mathrm{s} A B D, C D B$ respectively, then remaining $\square A F=$ rewaining $\square F C . \quad A x .3$. Q. E. D.

Ex.l. If through a point O, within a parallelogram $A B C D$, two straight lines are drawn parallel to the sides, and the parallelograms $O B, O D$ are equal ; the point O is in the diagonal $A C$.

Ex. $2 A B C D$ is a parallelogram, $A M N$ a straight line meeting the sides $B C, C D$ (one of them being produced) in M, N. Shew that the triangle $M B N$ is equal to the triangle $M D C$.

Prorostrion XLIV．Problem．

To a given straight line to apply a parallelogram，which shall be equal to a given triangle，and have one of its angles equal to a given angle．

Let $A B$ be the given st．line，C the given Δ, D the qiven \angle ．

It is required to apply to $A B a \square=\triangle C$ and having one of $i t s \angle s=\angle D$ ．

Make a $\square=\Delta C$ ，and having one of its angles $=\angle D, \quad$ I． 42. and suppose it to be removed to such a position that one of the sides containing this angle is in the same st．line with $A B$ ， and let the \square be denoted by BEFG．
Produce $F G$ to H ，draw $A H \|$ to $B G$ or $E F$ ，and join $B H$ ． Then $\because F H$ meets the $\| s . A F, E F$ ，
\therefore sim of $\angle \mathrm{s} A H F, H F E=$ two rt．$\angle \mathrm{s} ; \quad$ 1． 29.
\therefore sum of $\angle \mathrm{s} B H C, H F E$ is less than two rt．$\angle \mathrm{s}$ ；
$\therefore H B, F E$ will meet if produced towards B, E ． Post． 6. Let them meet in K ．
Through K draw $K L \|$ to $E A$ or $F H$ ， and produce $H A, G B$ to meet $K L$ in the pts．L, M ．
Then $H F K L$ is a \square ，and $H K$ is its diagonal ； and $A\left(\frac{7}{r}, M E\right.$ are $\square \mathrm{s}$ about $H K$ ，
\therefore complement $B L=$ complement $B F$ ，
I． 3.

$$
\therefore \square B L=\triangle C .
$$

Also the $\square B L$ has one of its $\angle \mathrm{s}, A B M=\angle E B G$ ，and \therefore equal to $\angle D$ ．

Ploorosition XlV. Problem.

T'o describe a parallelogram, which shall be equal to a given rectilincar figure, anul have one of to angles cqual to a given angle.

Let $A B C D$ be the given rectil. figure, and E the given 2.
It is required to describe a $\square=$ to $A B C D$, having me of i ts $\angle s=\angle E$.

$$
\text { Join } A C .
$$

Describe a $\square F G H K=\triangle A B C$, having $\angle F K H=\angle E$. I. 42.

To $G H$ apply a $\square G H M L=\triangle C D A$, having $\angle G H M=\angle E$.
Then $F K M L$ is the \square reqd.
$\therefore \because \angle G H M$ and $\angle H K H$ are each $=\angle E$;

$$
\therefore \angle G H M=\angle F K H \text {, }
$$

\therefore sum of $\angle \mathrm{s} G H M,(G H K=$ sum of $\angle \mathrm{s} F K H, G H K$

$$
=\text { two rt. } \angle \mathrm{s} ; \quad \text { I. } 29 .
$$

$\therefore K H M$ is a st. line.
I. 14.

Again, $\because H G$ meets the $\| s F G, K M$,
$\angle F G H=\angle G H M$,
\therefore sum of $\angle \mathrm{s} F G H, L G H=\operatorname{sum}$ of $\angle \mathrm{s} G H M, L G H$

$$
=\text { two rt. } \angle \mathrm{s} ; \quad \text { I. } 29 .
$$

$\therefore F G L$ is a st. line.
I. 14.

Then $\because K F$ is $\|$ to $H G$, and $H G$ is $\|$ to $L M$ $\therefore K F$ is $\|$ to $L M$; I. 30. and $K M$ has been shewn to be $\|$ to $F L$, $\therefore l / K M L$ is a parallelogram, and $\because F H=\triangle A B C$, and $G M=\triangle C D A$, $\therefore \square F M=$ whole rectil. fig. $A B C D$,
and $\square F M$ has one of its $\angle \mathrm{s}, F K M=\angle E$.
In the same way a \square may be constructed equal to a given rectil. fig. of any number of sides, and having one of its angles equal to a given angle.
Q. E. F.

Miscellaneous Excrcises.

1. Ir one diagonal of a quadrilateral bisect the other, it divides the quadrilateral into two equal triangles.
2. If from any point in the diagonal, or the diagonal produced, of a parallelogram, straight lines be drawn to the upposite angles, they will cut off equal triangles.
3. In a trapezium the straight line, joining the middle points of the parallel sides, bisects the traperium.
4. The diagonals $A C, B D$ of a parallelogram intersect in 0 , and P is a point within the triangle $A O B$; prove that the difference of the triangles $C P D, A P D$ is equal to the sum of the triangles $A P C, B P D$.
5. If either diagonal of a parallelogram be equal to a side of the figure, the other diagonal shall be greater than any side of the figure.
6. If throngh the angles of a parallelogram four straight lines be drawn parallel to its diagonals, another parallelogram will be formed, the area of which will be double that of the original parallelogram.
7. If two triangles have two sides respectively equal and the included angles supplemental, the triangles are equal.
8. Bisect a given triangle by a straight line drawn from : given point in one of the sides.
9. The base $A B$ of a triangle $A B C$ is produced to a point D such that $B D$ is equal to $A B$, and straight lines are drawn from A and D to E, the middle point of $B C$; prove that the triangle $A D E$ is equal to the triangle $A B C$.
10. Prove that a pair of the diagonals of the parallelograms, which are about the diameter of any parallelogram, are paralled to each other.

Proposition XLVI. Problem.

To describe a square upon a given straight line.

Let $A B$ be the given st. line. It is required to describe a square on $A B$.

From A draw $A C \perp$ to $A B$. I. 11. Cor.
In $A C$ make $A D=A B$.
Through D draw $D E \|$ to $A B$. I. 31.

Through B draw $B E \|$ to $A D$. I. 31.

Then $A E$ is a parallelogram,
and $\therefore A B=E D$, and $A D=B E$. I. 34.

But $A B=A D$;
$\therefore A B, B E, E D, D A$ are all equal ;
$\therefore A E$ is equilateral.
And $\angle B A D$ is a right angle.
$\therefore A E$ is a square, Def. sxx. and it is described on $A B$.
Q. E. F.

Ex. 1. Shew how to construct a rectangle whose sides are equal to two given straight lines.

Ex. 2. Shew that the squares on equal straight lines are equal.

Ex. 3. Shew that equal squares must be on equal straight lines.

Note. The theorems in Ex. 2 and 3 are assumed by Euclid in the proof of Prop. xlvin.

Proposinion XLVII. Theorem.

In any right-angled triangle the square which is described on the side subtending the right angle is equal to the squares described on the sides which contain the right angle.

Let $A B C$ be a right-angled \triangle, having the rt. $\angle B A C$.
Then must sq. on $B C=$ sum of sqq. on $B A, A C$.
On $B C, C A, A B$ descr. the sqq. $B D E C, C K H A, A G F B$.
Through A draw $A L \|$ to $D D$ or $C E$, and join $A D, F^{\prime} C$.
Then $\because \angle B A C$ and $\angle B A G$ are both $\mathrm{rt} . \angle \mathrm{s}$, $\therefore C A G$ is a st. line;
I. 14
and $\because \angle B A C$ and $\angle C A H$ are both rt. $\angle \mathrm{s}$; $\therefore B A H$ is a st. line.
I. 14.

Now $\because \angle D B C=\angle F^{\prime} B A$, each being a rt. \angle, adding to cach $\angle A B C$, we have $\angle A B D=\angle F B C$.

Ax. 2.
Then in $\triangle s A B D, F B C$,

$$
\because A B=F B, \text { and } B D=B C, \text { and } \angle A B D=\angle F B C,
$$

$$
\therefore \triangle A B D=\triangle F B C .
$$

I. 4.

Nox $\square B L$ is double of $\triangle A B D$, on same base $B D$ and between same \|s $A L, B D$,
I. 41.
and sq. $B G$ is double of $\angle F B C$, on same base $F B$ and between same lis $F B, G C$;
I. 41.

$$
\therefore \square B L=\text { sq. } B C
$$

Similarly, by joining $A E, B K$ it may be shewn that $\square C L=s q . A K$. Now sq. on $B C=$ sum of $\square B L$ and $\square C L$,
$=$ sum of sq. $B G$ and sq. $A K$,

- sum of sqq. on $B A$ and $A C$.
Q. E. D.

Ex. 1. Prove that the square, described upon the diagonal of any given square, is equal to twice the given square.

Ex. 2. Find a line, the square on which shall be equal to the sum of the squares on three given straight lines.

Ex. 3. If one angle of a triangle be equal to the sum of the other two, and one of the sides containing this angle being divided into four equal parts, the other enntains three of those parts; the remaining side of the triangle contains five such parts.
Ex. 4. The triangles $A B C, D E F$, having the angles $A C B$, $D F E$ right angles, have also the sides $A B, A C$ equal to $D F$, DF', each to each ; shew that the triangles are equal in every respect.

Note. This Theorem has been already deduced as a Corollary from Prop. E, page 43.

Ex. 5. Divide a given straight line into two parts, so that the square on one part sball be donble of the square on the other.

Ex. 6. If from one of the acute angles of a right-angled triangle a line be drawn to the opposite side, the squares on that side and on the line so drawn are together equal to the sum of the squares on the segment adjacent to the right angle and on the hyputenuse.
Ex. 7. In any triangle, if a line be drawn from the vertex at right angles to the base, the difference between the squares on the sides is equal to the difference between the squares on the segments of the base.

Proposition XLVIII. Theorem.

If the square described upon one of the sides of a triangle be equal to the squares described upon the other two sides of $i t$, the angle contained by those sides is a right angle.

Let the sq. on $B C$, a side of $\triangle A B C$, be equai to the sum of the sqq. on $A B, A C$.

Then must $\angle B A C$ be a rt. angle.
From pt. A draw $A D \perp$ to $A C$.
I. 11 .

Make $A D=A B$, and join $D C$.
Then

$$
\because A D=A B
$$

\therefore sq. on $A D=$ sq. on $A B ; \quad$ I. 46, Ex. 2. add to each sq. on $A C$.
then sum of sqq. on $A D, A C=$ sum of sqq. on $A B, A C$.
But $\because \angle D A C$ is a rt. angle,
\therefore sq. on $D C=$ sum of sqq. on $A D, A C ; \quad$ I. 47 . and, by hypothesis,
sq. on $B C=$ sum of sqq. on $A B, A C$;
\therefore sq. on $D C=\mathrm{sq}$. on $B C$;

$$
\therefore D C=B C . \quad \text { I. } 46, \text { Ex. } .
$$

Ther in $\triangle \mathrm{s} A B C, A D C$,
$\because A B=A D$, and $A C$ is common, and $B C=D C$, $\therefore \angle B A C=\angle D A C$;
and $\angle D A C$ is a rt. angle, by construction ; $\therefore \quad \therefore B A C$ is a rt. angle.

BOOK II.

INTRODUC'TORY REMARKS.

The geometrical figure with which we are chiefly concerned in this book is the Rectangle. A rectangle is said to be contained by any two of its adjacent sides.

Thus if $A B C D$ be a rectangle, it is said to be contained by $A B, A D$, or by any other pair of adjacent sides.

We shall use the abbreviation rect. $A B, A D$ to express the worls "the rectangle contained by $A B, A D$."

We shall make frequent use of a Theorem (employed, but not demonstrated, by Liuclid) which may be thus stated and proved.

Proposition A. Theoren.
If the aljacent sides of one rectangle be equal to the adjacent silcs of another rectangle, each to each, the rectangles are equal in area.
Let
$A B C D, E F G H$ be two rectangles : and let $A B=E F$ and $B C=F G$.

Then must rect. $A B C D=$ rect. $E F G H$.
For if the rect. $E F G H$ be applied to the rect. $A B C D$, so that $E F$ coincides with $A B$,
then $F G$ will fall on $B C, \because \angle E F G=\angle A B C$,
and G will coincide with $C, \because B C=F G$.
Similarly it may be shewn that H will coincide with D,
\therefore rect. EFGH coincides with and is therefore equal to rect
Q. E. D.

77

Protosition I. 'Ineorem.

If there be two straight lines, one of which is divided into any number of parts, the rectangle contained by the two straight lines is equal to the rectangles contained by the undivided line and the several parts of the dieided line.

Let $A B$ and $C D$ be two given st. lines, and let $C D$ be divided into any parts in E, F.
Then must rcct. $A B, C D=$ sum of rect. $A B, C E$ and rect. $A B, E F$ and rect. $A B, F D$.

From C draw $C G \perp$ to $C D$, and in $C G$ make $C H=A B$.
'Chrough H draw $H M \|$ to $C D$. I. 31.

Through E, F, and I draw $E K, F L, D M \|$ to $C H$.
Then $E K$ and $F L$, being each $=C H$, are each $=A B$.
Now $C M=\mathrm{smm}$ of $C K$ and $E L$ and $F M$.
And $C M=$ rect. $A B, C D, \quad \because C H=A B$,

$$
C K=\operatorname{rect} . A B, C E, \quad \because C H=A B
$$

$$
E L=\operatorname{rect} . A B, E F, \quad \because E K=A D
$$

$$
F M=\text { rect. } A B, F D, \quad \because F L=A B
$$

\therefore rect. $A B, C D=$ sum of rect. $A B, C E$ and rect. $A B, E F$ and rect. $A B, F D$.
Q. E. D.

Ex. If two straight lines bo cach divided into any number of parts, the rectangle contained by the two lines is equal to the rectangles contained by all the parts of the one taken soparately with all the parts of the other.

Proposition II. Theorem.

If a straight line be divided into any two parts, the restangles contained by the whole and cach of the parts are together equal to the square on the whole line.

Let the st. line $A B$ be divicied into any two parts in C.
Then must
sq. on $A B=$ sum of rect. $A B, A C$ and rect. $A B, C B$.
On $A B$ describe the sq. $A D E B$ I. 46.
Through 0 draw $C F$ \|to $A D$.
I. 31.

Then $A E=$ sum of $A F$ and $C E$.
Now $A E$ is the sq. on $A B$,

$$
\begin{array}{ll}
A F=\text { rect } . A D, A C, & \because A D=A B \\
C E=\text { rect } A B, C B, & \because B E=A B
\end{array}
$$

\therefore sq. on $A B=\operatorname{sum}$ if rect. $A B, A C$ and rect. $A B, C B$.

> Q. E. D.

Ex. The square on a strught line is equal to four times the square on half the ling.

Proposition III. Theorem.
If a straight line be divided into any two parts, the rectangie contained by the whole and one of the parts is equal to the rectangle contained by the two parts together with the square on the aforesaid part.

Let the st. line $A B$ be divided into any two parts in C.
Then must
rect. $A B, C B=$ sum of rect. $A C, C B$ and sq. on $C B$.
On $C B$ describe the sq. $C D E B$.
I. 46.

From A draw $A F \|$ to $C D$, meeting $E D$ produced in F.
Then $A E=$ sum of $A D$ and $C E$.
Now $A E=$ rect. $A B, C B, \quad \because B E=C B$,

$$
A D=\text { rect. } A C, C B, \quad \because C D=C B
$$

$$
C E=\text { sq. on } C B .
$$

\therefore rect. $A B, C B=$ sum of rect. $A C, C B$ and sq. on $C B$.
(2. E. D.

Note. When a straight line is cut in a point, the distances of the point of section from the ends of the line are called the segments of the line.

If a line $A B$ be divided in C, $A C$ and $C B$ are called the internal segments of $A B$.
If a line $A C$ be produced to B,
$A B$ and $C B$ are called the external segments of $A C$.

Proposition IV. Theorem.

If a straight line be divided into any two parts, the square on the whole line is equal to the squares on the two parts together with twice the rectangle contained by the parts.

Let the st. line $A B$ be divided into any two parts in C.
Then must
sq. on $A B=$ sum of sqq. on $A C, C B$ and twice rect. $A C, C B$.
On $A B$ describe the sq. $A D E B$.
I. 46 .

From $A D$ cut off $A H=C B$. Then $H D=A C$.
Draw $C G \|$ to $A D$, and $H K \|$ to $A B$, meeting $C G$ in F.

$$
\text { Then } \because B K=A H, \quad \therefore B K=C D, \quad \text { Ax. I. }
$$

$\therefore B K, K F, F C, C B$ are all equal ; and $K B C$ is a rt. \angle;
$\therefore C K$ is the sq. on $C B$. Def. xxx.
Also $H(\forall=$ sq. on $A C, \quad \because H F$ and $H D$ each $=A C$.
Now $A E=$ sum of $H G, C K, A F, F E$,
and

$$
\begin{aligned}
& A E=\text { sq. on } A B, \\
& H G=\text { sq. on } A C, \\
& C K=\text { sq. on } C B, \\
& A F=\text { rect. } A C, C B, \quad \because C F=C B, \\
& F E=\text { rect. } A C, C B, \quad \because F G=A C \text { and } F K=C B .
\end{aligned}
$$

\therefore sq. on $A B=$ sum of sqq. on $A C, C B$ and twice rect. $A C, C B$.
Q. E. D.

Ex. In a triangle, whose vertical angle is a right angle, a straight line is drawn from the vertex perpendicular to the base. Shew that the rectangle, contained by the segments of the base, is equal to the square on the perpendicular.
S.E.

Proposition V. Theorem.

If a straight line be divided into two equal paits and also into two unequal parts, the rectangle contained by the unequal parts, together with the square on the line between the points of section, is equal to the square on half the line.

Let the st. line $A B$ be divided equally in C and unequally in D.

Then must rect. $A D, D B$ together with sq. on $C D=s q$. on $C B$.

$$
\text { On } C B \text { describe the sq. } O E F B . \quad \text { I. } 46 .
$$

Draw $D G \|$ to $C E$, and from it cut off $D H=D B$. I. 31 .

Draw $H L K \|$ to $A D$, and $A K \|$ to $D H$. l. 31 .

Then rect. $D F=$ rect. $A L, \quad \because B F=A C$, and $B D=C L$.
Also $L G=$ sq. on $C D, \quad \because L H=C D$, and $H G=C D$.
Then rect. $A D, D B$ together with sq. on $C D$

$$
\begin{aligned}
& =A H \text { together with } L G \\
& =\text { sum of } A L \text { and } C H \text { and } L G \\
& =\text { sum of } D F \text { and } C H \text { and } L G \\
& =C F \\
& =\text { sq. on } C B .
\end{aligned}
$$

Q. E. D.

300k II.

Proposition Vi. 'jheorem.

If a straight line be bisected and produced to any point, the rectangle contained by the whole line thus produced and the part of it produced, toyether with the square on half the line bisected, is equal to the square on the straight line which is made up of the half and the part producred.

Let the st. line $A B$ be bisected in C and produced to D. Then must rect. $A D, D B$ together with sq. on $C B=s q$. on, $C D$.

On $C D$ describe the sq. $C E l D D$.
I. 46 .

Draw $B G \|$ to $C E$, and cut off $B H=B D$.
I. 31

Through H draw $K L M \|$ to $A D$ I. 31 .

Through A draw $A K \|$ to $C E$.
Now $\because B G=C D$ and $B H=B D$;
$\therefore H G=C B ; \quad$ Ax. 3.
\therefore rect. $M G=$ rect. $A L$.
II. A.

Then rect. $A D, D B$ together with sq. on $C B$

$$
\begin{aligned}
& =\text { sum of } A M \text { and } L G \\
& =\text { sum of } A L \text { and } C M \text { and } L G \\
& =\text { sum of } A \Gamma G \text { and } C M \text { and } L G \\
& =C F \\
& =\text { sG. on } C D .
\end{aligned}
$$

Q. E. D.

L book IL

Note. We here give the proof of an important theorem. which is usually placed as a corollary to Proposition V.

Proposition B. Theorem.
The difference between the squares on any two straight lines us equal to the rectangle contained by the sum and difference of those lines.

Let $A C, C D$ be two st. lines, of which $A C$ is the greater, and let them be placed so as to form one st. line $A D$.

Produce $A D$ to B, making $C B=A C$.
Then $A D=$ the sum of the lines $A C, C D$, and $D B=$ the difference of the lines $A C, C D$.
Then must difference between sqq. on $A C, C D=$ rect. $A D, D B$.
On $C B$ describe the sq. $C E F B$.
I. 46.

Draw $D G \|$ to $C E$, and from it cut oft $D H=D B$. I. 3].
Draw $H L K$ || to $A D$, and $A K \|$ to $D H$. I. 31.
Then rect. $D F=$ rect. $A L, \because B F=A C$, and $B D=C L$.
Also $L G=$ sq. on $C D, \quad \because L H=C D$, and $H G=C D$.
Then difference between sqq. on $A C, C D$

$$
\begin{aligned}
& =\text { difference between sqq. on } C B, C D \\
& =\text { sum of } C H \text { and } D F \\
& =\text { sum of } C H \text { and } A L \\
& =A H \\
& =\text { rect. } A D, D H \\
& =\text { rect. } A D, D B .
\end{aligned}
$$

Q. E. D.

Ex. Shew that Propositions V. and V1. might be deduced from this Proposition.

Foposition VII. Theorem.
a straight line be divided into any two parts, the squares on the whole line and on one of the parts are equal to twice the rectanale contained by the uhole and that part tongether with the square on the other part.

Let $A B$ be divided into any two parts in C.

Thm must

sqq. on $A B, B C=$ twice rect. $A B, B C$ together with sq. on $A C$.
On $A B$ describe the sq. $A D E B$.
From $A D$ cut off $A H=C B$.
Draw $C F \|$ to $A D$ and $H G K \|$ to $A B$.
I. 31.

Then $H F=$ sq. on $A C$, and $C K=$ sq. on $C B$.
Then sqq. on $A B, B C=$ sum of $A E$ and $C K$
$=$ sum of $A \bar{K}, H F, G E$ and $C K$
$=$ sum of $A K, H F$ and $C E$.
Now $A K=$ rect. $A B, B C, \quad \because B K=B C$;
$C E=$ rect. $A B, B C, \quad \because B E=A B$;
$H F=$ sq. on $A C$.
\therefore sqq. on $A B, B C=$ twice rect. $A B, B C$ together with sq. on $A C$.
Q. E. D.

Ex. If straight lines be drawn from G to B and from G to D. shew that $B G D$ is a straight line.

Proposition Vili. Theorlam.

If a straight line be divided into any two parts, four times the rectangle contained by the whole line and one of the partb, together with the square on the other part, is equal to the square on the straight line which is made up of the whole and the first part.

Let the st. line $A B$ be divided into any two parts in C.
Produce $A B$ to D, so that $B D=B C$.
Then must four times rect. $A B, B C$ together with sq. on $A C=s q$. on $A D$.

$$
\text { On } A D \text { deseribe the sq. } A E F D . \quad \text { I. } 46 \text {. }
$$

From $A E$ cut off $A M$ and $M X$ each $=C B$.
Through C, B draw $C H, B L \|$ to $A E$.
I. 31.

Through M, X draw $M G K N, X P R O \|$ to $A D$. I. 31.
Now $\because X E=A \dot{C}$, and $X P=A C, \therefore X H=$ sq. on $A C$.

$$
\begin{array}{ll}
\text { Also } A G=M P=P L=R F, & \text { II. A. } \\
\text { and } C K=G R=B N=K O ; & \text { II. A. }
\end{array}
$$

\therefore sum of these eight rectungies

$$
\begin{aligned}
& =\text { =four times the sum of } A G, C K \\
& =\text { fonr times } A K \\
& =\text { four times rect. } A B, B C .
\end{aligned}
$$

Then four times rect. $A B, B C$ and sq. on $A C$
$=$ sum of the eight rectangles and $X H$
$=A E F D$
$=$ sq. on $A D$.
Q. K. D.

Prorusition [K. Theorem.
If a straight line be divided into two equal, and also into two unequal parts, the squares on the two unequal parts are together double of the square on half the line and of the square on the lime betwecn the points of section.

Let $A B$ be divided equally in C and unequally in D.
Then must
sum of sqq. on $A D, D B=$ twice sum of sqq. on $A C, C D$.
Diaw $C E=A C$ at rt. $\angle \mathrm{s}$ to $A B$, and join $I: A, E B$.
Draw $D F$ at rt. $\angle \mathrm{s}$ to $A B$, meeting $E B$ in F.
Draw $F G$ at rt. $\angle \mathrm{s}$ to $L C$, and join $A F$
Then $\because \angle A C E$ is a rt. - ,
\therefore sum of $\angle \mathrm{s} A E C, E A C=$ rt. \angle;
I. 32.
and $\because \angle A E C=\angle E A C$,
I. A.
$\therefore \angle A E C=$ half art. \angle.
So also $\angle B E C$ and $\angle E D C$ are each $=$ half a rt. \angle.
Hence $\angle A E F$ is a rt. \angle.
Also, $\because \angle G E F$ is half $a \mathrm{rt} . \angle$, and $\angle E G F$ is a rt. \angle :
$\therefore \angle E F G$ is half a rt. \angle;
$\therefore \angle E F G=\angle G E F$, and $\therefore E G=G F$.

1. в. Cor.

So also $\angle B F D$ is half a it. \angle, and $B D=D F$.
Now sum of sqq. ni $A D, D B$
$=$ sq. on $A D$ together with sq. on $D F$
$=\mathrm{sq}$. on $A F$
I. 47.
$=$ sq. on $A E$ together with sq. on $E F$
I. 47.
$=$ anq. on $A C, E C$ together with sqq. on $E G, G F I$ I 47
$=\mathrm{twice} \mathrm{sq}$. on $A C$ together with twice sq. on $G F$
$=$ twice sq. on $A C$ together with twice sq. on $C D$.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

Proposition X. Theorem.
If a straight line be bisected and produced to any point, the square on the whole line thus produced and the square on the part of it produced are together double of the square on half the line bisected and of the square on the line made up of the half and the part produced.

Let the st. line $A B$ be bisected in C and produced to D.
Then must
sum of sqq. on $A D, B D=$ twice sum of sqq. on $A C, C D$.
Draw $C E \perp$ to $A B$, and make $C E=A C$.
Join $E A, E B$ and draw $E F \|$ to $A D$ and $D F \|$ to $C E$.
Then $\because \angle \mathrm{s} F E B, E F D$ are together less than two $\mathrm{rt} . \angle \mathrm{s}$,
$\therefore E B$ and $F D$ will meet if produced towards B, D in some pt. G.

Join $A G$.
Then $\because \angle A C E$ is a rt. \angle,
$\therefore \angle s E A C, A E C$ together a r rt. \angle, and $\because \angle E A C=\angle A E C$,
I. A. $\therefore \angle A E C=$ half a rt. \angle.
So also $\angle \mathrm{s} B E C, E B C$ each $=$ half a rt. \angle.
$\therefore \angle A E B$ is a rt. \angle.
Also $\angle D B G$, which $=\angle E B C$, is half a rt. \angle, and $\therefore \angle B G D$ is half a rt. \angle; $\therefore B D=D G$.
I. в. Cor.

Again, $\because \angle F G E=$ half a rt. \angle, and $\angle E F G$ is art. \angle, I. 34.
$\therefore \angle F E G=$ half a rt. \angle, and $E F=F G$. I. B, Cor.
Then sum of sqq. on $A D, D B$
$=$ sum of sqq. on $A D, D G$
=sq. on $A G$
I. 47.
$=$ sq. on $A E$ together with sq. on $E G \quad$ I. 47.
$=$ sqq. on $A C, E C$ together with sqq. on $E^{\prime} F, F G$ I. 47.
$=$ twice sq. on $A C$ together with twice sq. on $E F$
$=$ twice sq. on $A C$ together with twice sq. on $C D$. Q. e. D.

Proposition XI. Problem.
To divide a given straight line into two parts, so that the rectangle contained by the whole and one of the parts shall be equal to the square on the olher part.

On $A B$ descr. the sq. $A D C B$.
I. 46 .

Bisect $A D$ in E and join $E B$.
I. 10.

Produce $D A$ to F, making $E F=E B$.
On $A F$ descr. the sq. $A F G H$.
I. 46.

Then $A B$ is divided in H so that rect. $A B, B H=s q$. on $A H$.
Produce $G H$ to K.

- Then $\because D A$ is bisected in E and produced to F,
\therefore rect. $D F, F A$ together with sq. on $A E$

> =sq. on $E F$
> $=$ sq. on $E B, \quad \because E B=E F$,
II. 6.
=sum of sqq. on $A B, A E$.
I. 47 .

Take from each the square on $A E$.
Then rect. $D F, F A=$ sq. on $A B$.
Ax. 3.
Now $F K=$ rect. $D F, F A, \quad \because F G=F A$.

$$
\therefore F K=A C .
$$

Take from each the common part $A K$.

$$
\text { Then } F H=H C
$$

that is, sq. on $A H=$ rect. $A B, B H, \quad \because B C=A B$.
Thus $A B$ is divided in H as was reqd.
Q. E. F.

Ex. Shew that the squares on the whole line and one of the parts are equal to three times the square on the other part.

Profosition XII. Theorem.

In oltuse-angled triangles, if a perpendicular be drawn from either of the acute angles to the opposite side produced, the square on the side subtending the obtuse angle is greater than the squares on the sides containing the obtuse angle, by twice the rectangle contained by the side, upon which, when produced, the perpendicular falls, and the straight line intercepted without the triangle between the perpendicular and the obtuse angle.

Let $A B C$ be an obtuse-angled \triangle, having $\angle A C B$ obtuse.
From A draw $A D \perp$ to $B C$ produced.
Then must sq. on $A B$ be greater than sum of sqq. on $B C$, $C A$ by twice rect. $B C, C D$.

For since $B D$ is divided into two parts in C, sq. on $B D=$ sum of sqq. on $B C, C D$, and twice rect. $B C, C D$.
II. 4.

Add to each sq. on $D A$: then
sum of sqq. on $B D, D A=$ sum of sqq. on $B C, C D, D A$ and twice rect. $B C, C D$.

$$
\begin{array}{cll}
\text { Now sqq. on } B D, D A=\text { sq. on } A B, & \text { I. } 47 . \\
\text { and sqq. on } C D, D A=\text { sq. on } C A ; & \text { I. } 47 .
\end{array}
$$ parallel, and twice the rectangle contained by the sides. which are parallel.

Book II.]

Profosition XIII. Theorem.

In every triangle, the square on the side subtending any of the acute angles is less than the squares on the sides containing that angle, by twice the rectangle contained by either of these sides and the straight line intercepted between the perpendicular, let. fail upon it from the orposite angle, and the acute angle.

Fig. 1.

Fig. 2.

Let $A B C$ be any \triangle, having the $\angle A B C$ acute.
From A draw $A D \perp$ to $B C$ or $B C$ produced.
Then must sq. on $A C$ be less than the sum of sqq. on $A B$, $B C$, by iwice rect. $B C, B D$.

For in Fig. $1 B C$ is divided into two parts in D, and in Fig. $2^{\prime} B D$) is divided into two parts in C;

$$
\therefore \text { in both cases }
$$

sum of sqq. on $B C, B D=$ sum of twice rect. $B C, B D$ and sq. on $C D$.
II. 7.

Add to each the sq. on $D A$, then
sum of sqq. on $B C, B D, D A=$ sum of twice rect. $B C, B D$ and sqq. on $C D, D A$;
\therefore sum of sqq. on $B C, A B=$ sum of twice rect. $B C, B D$ and sq. on $A C$;
I. 47.
\therefore sq. on $A C$ is less than sum of sqq. on $A B, B C$ by twice rect. $B C, B D$.

The case, in which the perpendicular $A D$ coincides with $A C$, needs no proof.

Q. E. D.

Ex. Prove that the sum of the squares on any two sides of a triangle is equal to twice the sum of the squares on half the base and on the line joining the vertical angle with the middle point of the base.

Proposition XIV. Problem.
To describe a square that shall be equal to a given rectilinear figure.

Let A be the given rectil. figure.
It is reqd. to descrioe a square that shall $=A$.
Describe the rectangular $\square B C D E=A$.
Then if $B E=E D$ the $\square B C D E$ is a square, and what was reqd. is done.
But if $B E$ be not $=E D$, produce $B E$ to F, so that $E F=E D$. Bisect $B F$ in G; and with centre G and distance $G B$; describe the semicircle $B H F$.
Produce $D E$ to H and join $G H$.
Then, $\because B F$ is divided equally in G and unequally in E,
\therefore rect. $B E, E F$ together with sq. on $G E$

$$
\begin{aligned}
& \text { =sq. on } G F \\
& \text { =sq. on } G H \\
& =\text { sum of sqq. on } E H, G E .
\end{aligned}
$$

I. 47.

Take from each the square on $G E$.
Then rect. $B E, E F=$ sq. on $E H$.
But rect. $B E, E F=B D, \quad \because E F=E D$;
\therefore sq. on $E H=B D$;
\therefore sq. on $E H=$ rectil. figure A.

Miscellaneous Exercises on Book II.

i. In a triangle, whose vertical angle is a rignt angle, a straight line is drawn from the vertex perpendicular to the base; shew that the square on either of the sides adjacent to the right angle is equal to the rectangle contained by the base and the segment of it adjacent to that side.
2. The squares on the diagonals of a parallelogram are together equal to the squares on the four sides.
3. If $A B C D$ be any rectangle, and O any point either within or without the rectangle, shew that the sum of the squares on $O A, O C$ is equal to the sum of the squares on $O B$, OD.
4. If either diagonal of a parallelogram he equal to one of the sides about the opposite angle of the figure, the square on it shall be less than the square on the other diameter, by twice the square on the other side about that opposite angle.
5. Produce a given straight line $A B$ to C, so that the rectangle, contained by the sum and difference of $A B$ and $A C$, may pe equal to a given square.
6. Shew that the sum of the squares on the diagonals of any quadrilateral is less than the sum of the squares on the four sides, by four times the square on the line joining the middle points of the diagonals.
7. If the square on the perpendicular from the vertex of a triangle is equal to the rectangle, contained by the segments of the base, the vertical angle is a right angle.
8. If two straight lines be given, shew how to produce one of them so that the rectangle contained by it and the produced part may be equal to the square on the other.
9. If a straight line be divided into three parts, the square on the whole line is equal to the sum of the squares on the parts together with twice the rectangle contained by each two of the parts.
10. In any quadrilateral the squares on the diagonals are together equal to twice the sum of the squares on the straight lines joining the middle points of opposite sides.
11. If straight lines be drawn from each angle of a triangle to bisect the opposite sides, four times the sum of the squares on these lines is equal to three times the sum of the squares on the sides of the triangle.
12. $C D$ is drawn perpendicular to $A B$, a side of the triangle $A B C$, in which $A C=A B$. Shew that the square on $C D$ is equall to the square on $B D$ together with twice the rectangle $A D, D B$.
13. The hypotenuse $A B$ of a right-angled triangle $A B C$ is trisected in the points D, E; prove that if $(I D, O E$, be joined, the sum of the squares on the sides of the triangle $C D E$ is equal to two-thirds of the square on $A B$.
14. The square on the hypotemuse of an isosceles right angled triangle is equal to four times the square on the perpendicular from the right angle on the hypotenuse.
15. Divide a given straight line into two parts, so that the rectangle contained by them shall be equal to the square described upon a straight line, which is less than half the line divided.

Books I. \& II.] ON THE MEASUREMENT OF AREAS. 95

Note 6.-On the Mensurement of Areck

To measure a Magnitude, we fix upon some magnitude of the same kind to serve as a standard or unit; and then any magnitude of that kind is measured by the number of times it contains this unit, and this number is called the Measure of the quantity.

Suppose, for instance, we wish to mensure a straight line $A B$. We take another straight line $E F$ for our standard,

and then we say
if $A B$ contain $E F$ three times, the measure of $A B$ is 3 ,
\qquad
if x.. x.
Next suppose we wish to measure two straight lines $\boldsymbol{A} \boldsymbol{B}$, $C D$ by the same standard $E F$.

$$
\begin{array}{ll}
\text { If } & A B \text { contain } E F m \text { times } \\
\text { and } & C D \ldots \ldots \ldots \ldots . . n \text { times, }
\end{array}
$$

where m and n stand for numbers, whole or fractional, we say that $A B$ and $C D$ are commenstrable.

But it may happen that we s.ray be able to find a standard line $E F$, such that it is contained an exact number of times in $A B$; and yet there is no number, whole or fractional, which will express the number of times $E F$ is contained in $C D$.

In such a case, where no unit-line can be found, such that it is contained an exact number of times in each of two lines $A B, C D$, these two lines are called incommensurable.

In the processes of Geometry we constantly meet with incommensurable magnitudes. Thus the side and diagonal of a square are incommensurables; and so are the diameter and circumference of a circle.

Next, suppose two lines $A B, A C$ to be at right angles to each other and to be commensurable, so that $A B$ contains four times a certain unit of linear mensurement, which is contained by $A C$ three times.

Divide $A B, A C$ into four and three equal parts respectively, and draw lines through the points of division parallel to $A C$, $A B$ respectively; then the rectangle $A C D B$ is divided into a number of equal squares, each constructed on a line equal to the unit of linear measurement.

If one of these squares be taken as the unit of area, the measure of the area of the rectangle $A C D B$ will be the number of these squares.

Now this number will evidently be the same as that obtained by multiplying the measure of $A B$ by the measure of $A C$; that is, the measure of $A B$ being 4 and the measure of $A C 3$, the measure of $A C D B$ is 4×3 or 12. (Algebra, Art. 38.)

And generally, if the measures of two adjacent sides of a rectangle, supposed to be commensurable, be a and b, then the measure of the rectangle will be $a b$. (Algebra, Art. 39.)

If all lines were commensurable, then, whatever might be the length of two adjacent sides of a rectangle, we might select the unit of length, so that the measures of the two sides should be whole numbers; and then we might apply the processes of Algebra to establish many Propositions in Geometry by simpler methods than those adopted by Euclid.

Take, for example, the theorem in Book in. Prop. iv.
If all lines were commensurable we might proceed thus :-
Let the measure of $A C$ be x,

$$
\text { of } C B \ldots y .
$$

Then the measure of $A B$ is $x+y$.
Now

$$
(x+y)^{2}=x^{2}+y^{2}+2 x y,
$$

which proves the theorem.

But, inasmuch as all lines are not commensumable, we have in Geometry to treat of magnitudes und not of measures: that is, when we use the symbol A to represent a line (as in I. 22), A stands for the line itself and not, as in Algebra, for the number of units of length contained by the line.

The method, adopted by Euclid in Book II. to explain the relations between the rectangles contained by certain lines, is more exact than any methorl founded upon Algebraical principles can be ; becanse his method applies not merely to the case in which the sides of a rectangle are commensurable, but also to the case in which they are incommensurable.

The student is now in a position to understand the practical application of the thenry of Equivalence of Areas, of which the foundation is the 35th Proposition of Book I. We shall give a few examples of the use made of this theory in Mensuration.

Area of a Parallelogram.

The area of a parallelngram $A B C D$ is equal to the area of the rectangle $A B E F$ on the same base $A B$ and between the same parallels $A B, F C$.-

Now $B E$ is the altitude of the parallelogram $A B C D$ if $A B$ be taken as the base.

Hence area of $\square A B C D=$ rect. $A D, B E$.
If then the measure of the base be denoted by b, and altitude h, the measure of the area of the \square will be denoted by $\dot{0} \dot{n}$ That is, when the base and altitude are commensurable, measure of area $=$ measure of base into measure of altitude.

[^2]
Area of a Triengle.

If from one of the ingular points A of a triangle $A B C$, a perpendicular $A D$ be drawn to $B C$, Fig. 1, or to $B C$ produced, Fig. 2,

Fia. 1.

Fio. 9.

and if, in both cases, a parallelogram $A B C E$ be completed of which $A B, B C$ are adjacent sides, area of $\triangle A B C=$ half of area of $\square A B C E$.
Now if the measure of $B C$ be b, and A.D... h, measure of area of $\square A B C E$ is $b h$;
\therefore measure of area of $\triangle A B C$ is $\frac{b h}{2}$.
Arca of a Rhombus.
Let $A B C D$ be the given rhomhus.
Draw the diagonals $A C$ and $B I$, cutting one another in 0 .

It is easy to prove that $A C$ and $B D$ bisect each other at right angles.

Then if the measure of $A C$ be x, and $B D \ldots$!,
measure of arca of rhombus = twice measure of $\triangle A C D$,

$$
\begin{aligned}
& =\text { twice } \frac{x y}{4} \\
& =\frac{x y}{\vdots} .
\end{aligned}
$$

Area of a Trapezium.

Let $A B C D$ be the given trapezium, having the sides $A B$, CD parallel.

Draw $A E$ at right angles to ((1).

Produce $D C$ to F, making $C F=A B$.
Join $A F$, cutting $B C$ in O.
Then in $\triangle s A O B, C O F$,
$\therefore \angle B A O=\angle C F O$, and $\angle A O B=\angle F O C$, and $A B=C F$;

$$
\therefore \triangle C O F=\triangle A O B .
$$

Hence trapezium $A B C D=\triangle A D F$.
Now suppose the measures of $A B, C D, A E$ to be m, n, p respectively ;
\therefore measure of $D F=m+n, \because C F=A B$.
Then measure of area of traperium

$$
\begin{aligned}
& =\frac{1}{2}(\text { measure of } D F \times \text { measure of } A E) \\
& =\frac{1}{2}(m+n) \times p
\end{aligned}
$$

That is, the measure of the area of a trapezium is found by multiplying half the measure of the sum of the parallel sides by the measure of the perpendicular distance between the parallel sides.

Area of an Lrveyular Polygon.

There are three methods of finding the area of an irregalar polygon, which we shail here briefly notice.
I. The polygon may be divided into triangles, and the area of each of these triangles be found separately.

Thus the area of the irregular polygon $A B C D E$ is equal to the sum of the areas of the triangles $A B E, E B D, D B C$.
II. The polygon may lee converted into a single triangle of "qual urea.

If $A B C D E$ be a penacon, we can convert it into an equivalent guadrilateral ly the following process:

Join $B D$ and draw $C F$ parallel to $B D$, meeting $E D$ produced in F, and join $B F$.
Then will quadrilateral $A B F E=$ pentagon $A B C D E$.
For $\triangle B D F=\triangle B C D$, on sime base $B D$ and hetween same parallels.

If, then, from the pentagon we remove $\triangle B C D$, and add $\triangle B D F$ to the remainder, we obtain a quadrilateral $A B F E$ equivalent to the pentagon $A B C D E$.

Books I. \& In. $]$ AREA OF AV HKREGLY.AR TOIVGON. IのI
The quadrilateral may then, by a similar process, be converter? into an equivalent triangle, and thas a polygon of any number of sides may be gradatly converted into an equivalent triangle.

The area of this triangle may then be fomm.
III. The third method is chiefly employed in practice by óurveyors

Let $A B C D E F G$ be an irregular polvgon.
Draw $A E$, the longest diagonal, and drop perpendiculars on $A E$ from the other ancular points of the polygon.

The polygon is thus divided into figures which are either right-angled triangles, rectangles, or trapeziams ; and the areas of each of these figures may he readily calculated.

Note 7. On Projections.

The projection of a point B, on a straight line of unlimited length $A E$, is the point M at the foot of the perpendicular dropped from B on $A E$.
The projection of a straight line $B C$, on a straight line of unlimited length $A E$, is $M N$,--the part of $A E$ iutercepted between perpendiculars drawn from B and C.

When two lines, as $A B$ and $A E$, form an angle, the projection of $A B$ on $A E$ is $A M$.

We might employ the term projection with advantage to shorten and make clearer the enunciations of Props. xir. and xiII. of Book II.

Thus the enunciation of Prop. xil. might be :-
" In oblique-angled triangles, the square on the side subtending the obtuse angle is greater than the squares on the sides containing that angle, by twice the rectangle contained by one of these sides and the projection of the other on it."
The enunciation of Prop. xiri. might be altered in a similar manner.

Note 8. On Loci.
Suppose we have to determine the position of a point, which is equidistant from the extremities of a given straight line $B C$.

I'here is an infinite number of points satisfying this condition, for the vertex of any isosceles triangle, described on $B C$ as its base, is equidistant from D and C.

Let $A B C$ be one of the isosceles triangles described on $B C$.

If $B C$ be bisected in $D, M N$, a perpendicular to $B C$ drawn through D, will pass through A.

It is easy to shew that any point in $M N$, or $M N$ producerl in either direction, is equidistant from B and C.

It may also be proved that no point out of $M N$ is equidistant from B and C.

The line $M N$ is called the Locus of all the points, infinite in number, which are equidistant from B and C.

Def. In plane Geometry Locus is the name given to a line, straight or curved, all of whose points satisfy a certain geometrical condition (or have a common property), to the exclusion of all other points.

Next, suppose we have to determine the position of a point, which is equidistant firm three given points A, D, C, notin the same straight line.

If we join A and B, we know that all points equidistant from A and B lie in the line $P D$, which bisects $A B$ at right angles.

If we join B and C, we know that all points equidistant from B and C lie in the line $Q E$, which bisects $B C$ at right angles.

- Hence O, the point of intersection of $P D$ and $Q E$, is the only point equidistant from A, B and C.
$P D$ is the Locus of points equidistant from A and B,
$Q E \ldots .$.
and the Intersection of these Loci determines the point, which is equidistant from A, B and C.

> Sxamples of Loci.

Find the loci of
(1) Points at a given distance from a given point.
(2) Points at a given distance from a given straight line.
(3) The middle points of straight lines drawn from a given point to a given straight line.
(4) Points equidistant from the arms of an angle.
(5) Points equidistant from a given circle.
(6) Points equally distant from two straight lines which intersect.

Note 9. On the Methods employed in the solution of Problems.
In the solution of Geometrical Exercises, certain methods may be applied with success to particular classes of questions.

We propose to make a few remarks on these methods, so far as they are applicable to the first two books of Euclid's Elements.

The Method of Synthesis.

In the Exercises, attached to the Propositions in the preceding pages, the construction of the diagram, necessary for the solution of each question, has usually been fully described, or sufficiently suggested.

The student has in most cases been required simply to apply the geometrical fact, proved in the Proposition preceding the exercise, in order to arrive at the conclusion demanded in the question.

This way of proceeding is called Synthesis ($\sigma \dot{v} \nu \theta \epsilon \sigma \iota s=$ composition), because in it we proceed by a regular chain of reasoning from what is given to what is sought. This being the method employed by Euclid throughout the Elements, we have no need to exemplify it here.

The Method of Analysis.

The solution of many Problems is rendered more easy by supposing the problem solved and the diagram constructed. It is then often possible to observe relations between lines, angles and figures in the diagram, which are suggestive of the steps by which the necessary construction might have been effected.

This is called the Method of Analysis (à $\nu \dot{a} \lambda \nu \sigma \iota s=r e s o l u t i o n) . ~$ It is a method of discovering truth by reasoning concerning things unknown or propositions merely supposed, as if the one were given or the other were really true. The process can best be explained by the following examples.

Our first example of the Analytical process shall be the 31st Proposition of Euclid's First Book.

Ex. 1. To draw a straight line through a given point parallel to á given straight line.

Let A be the given point, and $B C$ be the given straight line.
Suppose the problem to be effected, and $E F$ to be the straight line required.

Now we know that any straight line $A D$ drawn from A to meet $B C$ makes equal angles with $E F$ and $B C$. (1. 29.)

This is a fact from which we can work backward, and arrive at the steps necessary for the solution of the problem ; thus:

Take any point I) in $B C$, join $A D$, make $\angle E A D=\angle A D C$, and produce $E A$ to F : then $E F$ must be parallel to $B C$.

Ex. 2. To inscribe in a triangle a rhombus, having one of its. angles coincident with an angle of the triangle.

Let $A B C$ be the given triangle.
Suppose the problem to be effected, and $D B F E$ to be the rhombus.

Then if $E B$ be joined, $\angle D B E=\angle F B E$.
This is a fact from which we can work backward, and deduce the necessary construction ; thus :

Bisect $\angle A B C$ by the straight line $R E$, meeting $A C$ in E.
Draw $E D$ and $E F$ parallel to $B C$ and $A B$ respectively.
Then $D B F E$ is the rhombus required. (See Ex. 4, p. 59.)
Lix. 3. I'o ditrmine the point in a given siraight line, at which straight limes, drawn from two given points, in the same sille of the given line, make equel angles with it.

Le; ($D 1$) be the given line, and A and E the given points.
Suppose the problem to be effected, and P to be the point required.

We then reason thus:
If $B P$ were produced to some point A, $\angle C P A^{\prime}$, being $=\angle B P D$, will be $=\angle A P C$.
Again, if $P A^{\prime}$ be made equal to $P A$, $A A^{\prime}$ will be lisected by $C P$ at right angles.

This is a fact from which we can work backward, and find the steps necessary for the solution of the problem; thus :

From A draw $A O \perp$ to $C D$.
Produce $A O$ to A^{\prime}, making $O A^{\prime}=O A$.
Join $B A^{\prime}$, cutting $C D$ in P.
Then P is the point required.

Nore 10. On Symmetry.

The problem, which we have just been considering, suggests the following remarks :

If two points, A and A^{\prime}, be so situated with respect to a straight line CD, that $(C D$ bisects at right angles the straight line joining A and A^{\prime}, then A and A^{\prime} are said to be symmetrical with regard to $C D$.

The importance of symmetrical relations, as suggestive of methods for the solution of problems, cannot be fully shewn
to a learner, who is unacquainted with the properties of the circle. The following example, however, will illustrate this part of the subject sufficiently for our purpose at present.

Find a point in a given straight line, such that the sum of its distances from two fixed points on the same side of the line is a minimum, that is, less than the sum of the distances of any other point in the line from the fixed points.

Taking the diagram of the last example, suppose $C D$ to be the given line, and A, B the given points.

Now if A and A^{\prime} be symmetrical with respeet to $C D$, we know that every point in $C D$ is equally distant from A and A^{\prime}. (See Note 8, p. 103.)

Hence the sum of the distances of any point in $C D$ from A and B is equal to the sum of the distances of that point from A^{\prime} and B.

But the sum of the distances of a point in $C D$ from A^{\prime} and B is the least possible when it lies in the straight line joining A^{\prime} and B.

Hence the point P, determined as in the last example, is the point required.
Note. Propositions ix., x., xi., xil. of Book I. give good examples of symmetrical constructions.

Note 11. Euclid's Proof of i: 5.

The angles at the base of an isosceles triangle are equal to one another ; and if the equal sides be produced, the angles upon the other side of the base shall be equal.

Let $A B C$ be an isosceles \triangle, having $A B=4 C$
Produce $A B, A C$ to D and E.
Then must $\angle A B C=\angle A C B$, and $\angle D B C=\angle E C B$.

In $B D$ talise any pt. F.
From $A E$ cut of $A G=A F$.
Join $F C$ and $G B$.

Then in $\triangle s A F C, A G B$,
$\because F A=G A$, and $A C=A B$, and $\angle F A C=\angle G A B$,
$\therefore F C=G B$, and $\angle A F C=\angle A G B$, and $\angle A C F=\angle A B G$.

$$
\text { I. } 4 .
$$

Again,

$$
\because A F=A G,
$$

of which the parts $A B, A C$ are equal,

$$
\therefore \text { remainder } B F=\text { remainder } C G . \quad A x .3 \text {. }
$$

Then in $\triangle \mathrm{s} B F C, C G B$,

$$
\begin{aligned}
& \because B F=C G \text {, and } F C=G B, \text { and } \angle B F C=\angle C G B . \\
& \quad \therefore \angle F B C=\angle G C B, \text { and } \angle B C F=\angle C B G \text {, I. } 4 .
\end{aligned}
$$

Now it has been proved that $\angle A C F=\angle A B G$, of which the parts $\angle B C F$ and $\angle C B G$ are equal;
\therefore remainıng $\angle A C B=$ remaining $\angle A B C$.
Ax. 3.
Also it has been proved that $\angle F B C=\angle G C B$, that is,

$$
\angle D B C=\angle E C B .
$$

Q. E. D.

Note 12. Euclid's Proof of I. 6. -
If two angles of a triangle be equal to one another, the sides also, which subtend the equal angles, shall be equal to one another.

In $\triangle A B C$ let $\angle A C B=\angle A B C$. Then must $A B=A C$.
For if not, $A B$ is either greater or less than $A Q$
Suppose $A B$ to be greater than $A C$.
From $A B$ cut off $B D=A C$, and join $D C$.
Then in $\triangle \mathrm{s} D B C, A C B$,
$\because D B=A C$, and $B C$ is common, and $\angle D B C=\angle A C B$,

$$
\therefore \triangle D B C=\triangle A C B \text {; }
$$

I. 4.
that is, the less=the greater ; which is absurd.
$\therefore A B$ is not greater than $A C$.
Similarly it may be shewn that $A B$ is not less than $A C$;

$$
\therefore A B=A C \text {. }
$$

Q. E. D.

Note 13. Euclid's Proof of I. 7.
Upon the same base and on the same side of $i t$, there cannot be two triangles that have their sides which are terminated in one extremity of the base equal to one another. and their sides which are terminated in the other extremity of the base equal also.

If it be possible, on the same base $A B$, and on the same side of it, let there be two $\triangle s A C B, A D B$, such that $A C=A D$, and also $B C=B D$.

Join CD.
 111

Finst, whers the vertex of each of the Δs is outside the other Δ (F゙ig. 1.);

Fig 2.

$$
\begin{aligned}
\because A D & =A C \\
\therefore \angle A C D & =\angle A D C
\end{aligned}
$$

But $\angle A C D$ is greater than $\angle B C D$;

$$
\ldots \leq A D C \text { is greater than } \angle B C D \text {; }
$$

much more is $\angle B D C$ greater than $\angle B C D$.
Again,

$$
\begin{aligned}
\because B C & =B D \\
\therefore \angle B D C & =\angle B C D
\end{aligned}
$$

that is, $\angle B D C$ is both equal to and greater than $\angle B C D$; which is absurd.

Secondly, when the vertex D of one of the Δs falls within the other Δ (Fig. 2);

Produce $A C$ and $A D$ to E and F
Then

$$
\because A C=A D
$$

$$
\therefore \angle E C D=\angle F D C
$$

But $\angle E C D$ is greater than $\angle B C D$;
$\therefore \angle F D C$ is greater than $\angle B C D$;
much more is $\angle B D C$ greater that $\angle B C D$.
Again,
$\because B C=B D$.

$$
\therefore \angle B D C=\angle B C D ;
$$

that is, $\angle B D C$ is both equal to and greater than $\angle B C D$; which is absurd.

Lastly, when the vertex D of one of the Δs falls on a side $B C^{\prime}$ of the other, it is plain that $B C$ and $B D$ cannot be equal.
Q. E. D.

Note 14. Luclid's Proof of I. 8.
If two triangles have two sides of the one equal to two sides of the other, each to cach, and have likewise their bases rqual, the angle which is contained by the two sites of the one must be equal to the angle contained by the two sides of the other.

Let the sides of the $\triangle \mathrm{s} A B C, D E F$ be equal, each to each, that is, $A B=D E, A C=D F$ and $B C=E F$.

Then must $\angle B A C=\angle E D F$.
Apply the $\triangle A B C$ to the $\triangle D E F$. so that pt. B is on pt. E, and $B C$ on $E F$.
Then

$$
\because B C=E F,
$$

$\therefore C$ will coincide with F, and $A C$ will coincide with $E F$.

Then $A B$ and $A C$ must coincide with $D E$ and $D F$.
For if $A B$ and $A C$ have a different position, as $G E, G F$, then upon the same base and upon the same side of it there can be two Δs, which have their sides which are terminated in one extremity of the base equal, and their sides which are terminated in the other extremity of the base also equal: which is impossible.
I. 7.
\therefore since base $B C$ coincides with base $E F$,
$A B$ must coincide with $D E$, and $A C$ with $D F$;
$\therefore \angle B A C$ coincides with and is equal to $\angle E D F$.
Q. E. D.

Notk 15. Another Proof of 1. 2. 4.
In the $\triangle s A B C, 15 E f^{\prime}$, let $A B=D E$ und $A C=D F$, and let $\angle D A C$ be greater than $\angle E D F$.

I'hen must $\mathcal{E C}$ be grealef than E 'r'.

Apply the $\triangle D E F$ to the $\triangle A B C$
so that $D E$ coincides with $A B$.
'Then $\because \angle E D F$ is less thin $\angle B A C$,
$D F$ with fall between $B A$ and $A C$,
and F will fall on, or above, or below, $B C$.
I. If \bar{r} full on $B C$,
$B F$ is less tham $B C$;
$\therefore E F$ is less thim $B C$.

11. If F full above $B C$,
$B F, F A$ together are less than $B C ; C A$, and $F_{A} A=C A$;
$\therefore B F^{\prime}$ is less thatn $B C^{\prime}$;
$\therefore E A^{\prime}$ is less than $B C$.

III. If F fall below $\mathbf{E C}$. let $A F$ cut $B C$ in O.

Then $B O, O F$ together are greater than $B F$, I. 20. and $O C . A O \ldots .$. I. 20.
 and $A H=A C$,
$\therefore B C$ is greater than $B F^{\circ}$ and $\therefore E F$ is less than $B C$.
4. E. D.

Nope 16. inuciul's Proof of 1.26.
If two triangles have two angles of the one equal to two angles of the other, each to each, aiul one side cqual to one side, riz., either the sides adjseent to the equal angles, or the sides opposite to equal angles in each; then shall the other sides be equal, each to each; and also the third angle of the one to the third angle of the other.

In $\triangle \mathrm{s} A B C, D E F$,
Let $\angle A B C=\angle D E F$, and $\angle A C B=\angle D F E$; and first,

Let the sides adjacent to the equal $\angle s$ in each be equal, that is, let $B C=E F$.
Then must $A B=D E$, and $A C=J F$, and $\angle B A C=\angle E D F$.
For if $A B$ be not $=D E$, one of them must be the greater.
Let $A B$ be the greater, and make $G D=D E$, and join $G C$
Then in $\triangle \mathrm{s} G B C, D E F$;
$\because G B=D E$, and $B C=E F$, and $\angle G B C=\angle D E F$, $\therefore \angle G C B=\angle D F E$.
But $\angle A C E=\angle D F E$ by hypothesis; $\therefore \angle G C B=\angle A C B ;$
that is, the less $=$ the greater, which is impossible.
$\therefore A B$ is not greater than $D E$.
In the same way it may be shewn that $A B$ is not less than DE;

$$
\therefore A B=D E .
$$

Then in $\triangle \mathrm{s} A B C, I E F$,

$$
\begin{aligned}
& \because A B=D E, \text { and } B C=E F, \text { and } \angle A B C=\angle D E F, \\
& \therefore A C=D F, \text { and } \angle B A C=\angle E D F .
\end{aligned}
$$

Fooks I. \& in. E'C'CLID'S PMOOF OF I. 26.

Noxt, let the sides which are opposite to equal angles in each triangle be equal, viz., $A E=D E$. Their must $A C=D F$, and $B C=E H^{\prime}$, and $\angle B A C=\angle E D F$.

For if $B C$ be not $=E F$, let $B C$ be the greater, and make $B H=E F$, and join $A H$.

Then in $\triangle s A B H, D E F$,
$\because A B=D E$, and $B H=E F$, and $\angle A B H=\angle D E F$,

$$
\therefore \angle A H B=\angle D F E .
$$

I. 4 .

But $\angle A C B=\angle D F E$, by hypothesis,

$$
\therefore \angle A H B=\angle A C B
$$

that is, the exterior \angle of $\triangle A I C C$ is equal to the interior and opposite $\angle A C B$, which is impossible.
$\therefore B C$ is not greater than $E F$.
In the same way it may be shewn that $E C^{\prime}$ is not less than $E F$;

$$
\therefore B C=E F
$$

Then m $\triangle \mathrm{s} A B C, D E F$,

$$
\begin{aligned}
\because A B= & =D E, \text { and } B C=E F, \text { and } \angle A B C=\angle D E F, \\
& \cdots A C=D F_{3} \text { and } \angle B A C=\angle E D F .
\end{aligned}
$$

Q. E. D.

Miscellaneous Exercises on Books I. and II.

1. $A B$ and $C D$ are equal staight lines, bisecting one another at right angles. Shew that $A C B D$ is a square.
2. From a point in the side of a parallelogram draw a line dividing the parallelngram into two equal parts.
3. In the triangle $F D C$, if $F C D$ be a right angle, and augle $F D C$ be double of angle $\left(F^{\prime} L\right)$, shew that $H^{\prime} D$ is double of $D C$.
4. If $A B C$ be an equilateral triangle, aud $A D, B E$ be perpendiculars to the opposite sides intersecting in F; shew that the square on $A D$ is equal to three times the square on $A F$.
5. Describe a rhombus, which shall be equal to a given triangle, and have each of its sides equal to one side of the triangle.
6. From a given point, outside a given straight line, draw a line making with the given line an angle equal to a given rectilineal angle.
7. If two straight lines be drawn from two given poiuts to meet in a given straight line, shew that the sum of these lines is the least possible, when they make equal angles with the given line.
8. $A B C D$ is a parallelogram, whose diaronals $A C, B D$ intersect in O; shew that if the parallelograms $A O B P, D O C Q$ be completed, the straight liue joining P and Q passes through O.
9. $A B C D, E B C F$ are two parallelogranms on the same batse $B C$, and so situated that $C F^{\prime}$ passes through A. Join $D F$, and produce it to meet $B E$ produced in K; join $F B$, and prove that the triangle $F A B$ equals the triangle $F E K$.
10. The alternate sides of a polygon are produced to meet; shew that all the angles at their points of intersection together with four right angles are equal to all the interior angles of the polygon.
11. Shew that the perimeter of a rectangle is always greater than that of the square equal to the rectangle.
I. \& iI.
 117
12. Shew that tha opposite sides of an equangular hexaron are parallel, though they be not equal.
13. If two equal straight lines intersect each other anywhere at right angles, shew that the area of the quadrilatemal formed by joining their extremities is invariable, and equal to onr-hall the square on either line.
14. Two triangles $A C B, A D B$ are constructed on the sime side of the same base $A B$. Shew that if $A C=B I$) ani $A D=B C$, then $C D$ is parallel to $A B$; but if $A C=B C$ and $A D=B D$, then $C D$ is perpendicular to $A B$.
15. $A B$ is the hypotenuse of a right-angled triangle $A B C$; find a point D in $A B$, such that $D B$ maly be equal to the perpendicular from D on $A C$.
16. Find the locus of the vertices of triangles of equal area on the sume base, and on the same side of $i t$.
17. Shew that the perimeter of an isosceles triangle is less than that of any triangle of equal area on the same base.
18. If each of the equal angles of an isosceles triangle be equal to one-fourth the vertical angle, and from one of them a perpendicular be drawn to the base, meeting the opposite side produced, then will the part, prolluced, the perpendicular, and the remaining side, form an equilateral triangle.
19. If a straight line termiuated by the sides of a trianglo be bisected, shew that no other line terminated by the same two sides can be bisected in the same point.
20. Shew how to bisect a given quadrilateral by a straight line drawn from one of its angles.
21. Given the lengths of the two diagonals of a rhombus, construct it.
22. $A B C D$ is a quadrilateral figure : construct a triangle whose base shall be in the line $A B$, such that its altitude shall be equal to a piven line, and its area equal to that of the quadrilateral.
23. If from any point in the base of an isosceles triangle perpendiculars be drawn to the sides, their sum will be equal to the perpendicular from either extremity of the base upon the opposite side.
24. If $A B C$ be a trlangle, in which O^{\prime} is a right angle, and $D E$ be drawn from a point D in $A C$ at right angles to $A B$, prove that the rectangles $A B, A E$ and $A C, A D$ are equal.
25. A line is drawn bisecting parallelogram $A B C D$, and meeting $A D, B C$ in E and F : shew that the triangles $E B F$, $C E D$ are equal.
26. Upon the hypotenuse $B C$ and the sides $C A, A B$ of a right-angled triangle $A B C$, squares $B D E C, A F$ and $A G$ are described: shew that the squares on $D G$ and $E F$ are together equal to five times the square on $B C$.
27. If from the vertical angle of a triancrle three straight lines be drawn, one bisecting the angle, the second bisecting the base, and the third perpendicular to the base, shew that the first lies, both in position and magnitude, between the other two.
28. If $A B C$ be a triangle, whose angle A is a right angle, and $B E, C F$ be drawn bisecting the opposite sides respectively, shew that four times the sum of the squares on $B E$ and $C F$ is equal to five times the square on $B C$.
29. Let $A C B, A D B$ be two right-angled triangles having a common hypotenuse $A B$. Join $C D$ and on $C I$) produced both ways draw perpendiculars $A E, B F$. Shew that the sum of the squares on $C E$ and $C F$ is equal to the sum of the squares on $D E$ and $D F$.
30. In the base $A C$ of a triangle take any point D : bisect $A D, D C, A B, D C$ at the points E, F, G, H respectively. Shew that $E G$ is equal and parallel to $F I I$.
31. If $A D$ be drawn from the vertex of an isosceles triangle $A B C$ to a point D in the base, shew that the rectangle $B D, D C$ is equal to the difference between the squares on $A B$ and $A D$.
32. If in the sides of a square four points be taken at equal distances from the four angular points taken in order, the figure contained by the strairght lines, which join them, shall also be a square.
33. If the sides of an equilateral and equiangular pentagon be produced to meet, shew that the sum of the angles at the points of mecting is equal to two right angles.
le, and to $A B$, aul. D, and EBF, B of a $A G$ are ogether straight isecting ew that een the It angle, ectively, ad $C F$ is
having produced the sum esquares
: bisect ectively.
triangle $B D, D C$ ind $A D$. at equal der, the em, shall
34. Describe a squate that shali be cyual to the diflerence between two given and unequal squares.
35. $A B C D, A E C F$ are two parallelograms, $E A, A D$ being in a straight line. Let $F G$, drawn parallel to $A C$, meet $B .1$ produced in G. Then the triangle $A B E$ equals the triangle $A D G$.
36. From $A C$, the diagonal of a square $A B C D$, cut oft $A E$ equal to one-fourth of $A C$, and join $B R$, DE. Shew that the figure $B A D E$ is equal to twice the square on $A E$.
37. If $A B C$ be a triangle, with the angles at B and O each double of the anyle at A, prove that the square on $A B$ is equal to the squire on $B C^{\prime}$ together with the rectangle $A B$, $B C$.
38. If two sides of a quadrilateral be parallel, the triangle contained by either of the other sides and the two straight lines drawn from its extremities to the middle point of the cpposite side is hall the quadrilateral.
39. Describe a parallelogram equal to and equiangular with a given parallelogram, and having a given altitude.
40. If the sides of a triangle taken in order be produced to twice their original lengths, and the outer extremities be joined, the triangle so formed will be seven times the original triangle.
41. If one of the achte angles of a right-angled isosceles. triangle be bisected, the opposite side will be divided hy the bisecting line into two parts, such that the square on one will be couble of the square on the other.
42. $A B C$ is a triangle, rightangled at B, and $B D$ is drawn perpendicular to the base, and is produced to E until $E C B$ is a right angle ; prove that the square on $B O$ is equal to the sum of the rectingles $A D, D C$ and $D D, D E$.
43. Shew that the stm of the squares on two unequal lines is" greater than twice the rectingle contained by the lines.
44. From a given isosccles triangle cut off a trapezium, having the hase of the tiangle for one of its parallel sides, and having the other three sides equal.
45. If any number of parallelograms he constructed liaving their sides of given length, shew that the sim of the squares on the diagonals of each will be the same.
46. $A B C D$ is a right-angled parallelogram, and $A B$ is double of $B C$; on $A B$ an equilateral triangle is constructed : shew that its area will be less than that of the parallelogram.
47. A point O is taken within a triangle $A B C$, such that the angles $B O C, C O A, A O B$ are equal ; prove that the squares on $B C, C A, A B$ are together equal to the rectangles contained hy $O B, O C ; O C, O A ; O A, O B$; and twice the sum of the squares on $\cap A, \cap D, \cap r$.
48. If the sides of an equilateral and equiangular hexagon be produced to meet, the angles formed by these lines are together equal to four right angles.
49. $A B C$ is a triangle light-angled at A; in the hypottnuse two points D, E are taken such that $B D=B A$ and $C E=C A$; shew that the square on $D E$ is equal to twice tse rectangle contained by $B E, C D$.
50. Given one side of a rectangle which is equal in area to a given spuare, find the nther side.
51. $A B, A C$ are the two eqral sides of an isnsceles triangle: from $B, B]$) is drawn perpendicular to $A C$, meeting it in 1 ; shew that the square on $B D$ is greater than the square on $C l$) by twice the rectangle $A D, C D$.
I. \& II.
having squares double : shew
that the mares on ined by of the
hexagon
nes are
hypote3A anl vice $t^{3} \mathrm{~A}$
rea to
riangle:
t in 1 ; ;
on Cl

APPENDIX.

EXAMINATION PAPERS IN EUCLID

SET TO CANDIDATES FOR

First and Second Class Provincial Cerifificates,

and to stunents matriculating in the

UNIVERSITY OF TORONTO.

SECOND CLASS PROVINCIAL CERTIFICATES, 1871.
TIME—TWO HOURG AND A HALF.

1. If two triangles have two sides of the one equal to two sides of the other, each to each, and have likewise their bases equal, the angle which is contained by the two sides of the one shall be equal to the angle contained by the two sides, equal to them, of the other.
2. I'riangles upon the same base, and between the same parallels, are equal to one another.
3. If the square described upon one of the sides of a triangle be equal to the squares described upon the other two sides of it, the angle contained by these two sides is a right angle.
4. If a straight line he divided into two equal, and also into two unequal, parts, the squares on the two unequal parts are together double of the square on half the line, and of the square on the line between the points of section.
5. If a straight line be divided into any two parts, the rectangles contained by the whole and each of the parts are together equal to the square on the whole line.
6. Bisect a parallelogram by a straight line drawn from a point in one of its sides.
7. Let $A B C$ be a triangle, and let $B D$ be straight line drawn to D , a point in A C between A and C , then, if $A B$ be greater than $A C$, the excess of $A B$ above $A C$ is less than that of B D abore $D C$.
8. In a triangle $\mathrm{A} B \mathrm{C}, \mathrm{A} D$ being drawn perpendicular to the straight line B D which bisects the angle B, show that a line drawn from D parallel to BC will bisect A C .
iNote.-The percentage of marks requisite, in order that a eandidate may be ranked of a particular grade, will be taken 03 the value of the above paper, omitting question 8.
9. Define a straight line, aplan" rectihneal angle, a right angle. a Gnomon. Enmeiato Enclid's I'ostulates.
10. If from the ends of the side of a triangle there be drawn two straight lines to a point within the triangle, these shall be less than the other two sides of the triangle, but shall contain a greater angle.
11. If two triangles have two angles of the one equal to angles of the other, each to each, and one side equal to one side, namely, either the sides adjacent to the equal angles, or sides which are opposite to equal angles in each; then shall the other sides be equal, each to each; and also the third angle of the one equal to the third angle of the other. 'Toke the case in which the assumed squal sides are those opposite to equal angles.)
12. In every triangle, the square on the side subtending ar. acute angle is less thon the sides containing that angle, by twice the rectangle contained by either of these sides, and the straight line intercepted between: the perpenticular let fall on it from the opposite angle, and nonte angle. (Take the case where the perpendicular falls within the triangle.)
13. If Ω straight line be divided into my tro parts, the squares: on the whole line, and one of the parts, are equal to twice the rectangle contained by the whole and that. part, together with the square on the other part.
14. Prove that, if a straight line AD be drawn from A, one of the angles of a triangle ABC , to D , the middle point. of the opposite side $\mathrm{BC}, \mathrm{BA} \times \mathrm{AC}$ is greater than 2 : AD.
15. Let the equilateral triangle ABC , and triangle ADB , in which the angle $A B D$ is a right angle, be on the sane. base AB , and between the same parallels AB and CD . Prove that $4 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$
8 From D, a point in $A B$, a side of the triangle $A B C$, it is required to draw a straight line DE , cutting BC in E , and AC produced in F , so that DE may be equal to EF.

SECOND CLASS PROVINCIAL CERTIFICATES, 1873.
them-two houns and a half.
Note.-Candidates who take only Book I, will confine themselves to the first cight questions; those who take Books I and II, will omit the first two quentions.

ht angle,

A drawn le, these triangle,
o angles d to one he equal males in each to nal to the hich thr 1 angles.) ading ar. ling that either of 1 betweon: opposite e the per-
te squares: equal tc and that. part. A, one of idle point. er than 2:

ADB , in the same 3 and CD.

ABC , it is
BC in E , equal to
s, 1873. hoks I and

1. Lf unt angles of a triangle be equal to cne another, the sides also which subteme, or are opposite to, the equal angles, shall be equal to one another.
2. If one side of a triangle be prodnced, the exterior angle shall be greater than either of the interior opposite angles.
3. The opposite side, and angles of a parallelogram, are equal to one another.
4. The complements of the parallelograms, which are about the diameter of any parallelogram, are equal to one another.
E. To describe a square on \dot{a} given straight line.
5. Let A BCD be a quadrilateral figure whose opposite angles $A B C$ and $A D C$ are right angles. Prove that, if $A B$ be equal to $A D, C B$ and $C D$ shall also bo equal to one another.
6. If A $13(1$ I) be a quadrilateral figure, haring the side A B parallel to the side C D, the straight line which joins the mitdle points of A B and D C shall divide the quadrilateral into two equal parts.
7. The straight line, which joins the middle points of two sides of a triangle, is parallel to the base.
8. If a straight line be divided into any two parts, the square : n the whole line is equal to the squares on the two parts, together with twice the rectangle contained by the parts.
9. In an obtuse angled triangle, is the sum of the sides containing the oltuse augle greater or less than the square of the side opposite to the obtuse angle? And, by how much? Prove the proposition.

SECOND CLASS PROVINCIAL CERTIFICATES, 1874.
TIME-TWO HOURS AND THREE-QUARTEIR.
Note.-Candidates who take only Book I. will confine themselves to the first 7 questions. Those who take Books I. and II. will omit questions 1, 2, and 3.

1. When is one straight line said to be perpendicular to another.
To draw a straight line perpendicular to a given straight line of an unlimited length, from a given point without it.
2. If one side of a triangle be produced, the exterior angle shall be greater than either of the interior opposite angles.
3. If two triangles have two angles of the one equal to two angles of the other, each to each; and one side equal to one side, namely, sides which are opposite to
iv.

\triangle PPENDIX.

equal angles in each; then shall the other sides be equal, each to each.
4. What are parallel straight lines?

If a straight line, frlling on two other straight lues, make the alternate angles equal to one another, the two straight lines shall be parallel to one auother.
5. What is a parallologram?

Parallelograms on equal bases, and between the same parallels, are equal to one another.
6. If two isosceles triangles be on the same base, and on the same side of it, the straight line which joins their vertices, will, if produced, cut the base at right angles.
7. Let ABC be a triangle, in which the angle ABC is a right angle. From AC cut off A ! equal to $A B$, and join BD. Prove that the angle BAC is equal to twice the angle r'BD.
8. If a straight line be divided into two equal parts and also into two uncqual parts, the rectangle contained by the unequal parts, together with the square on the line between the points of section, is equal to, \&c. (5, II.)
9. In every triangle, the square on the side subtending an acute angle is less than the squares on the sides containing that angle, by dic. (13, II). (It will be sufficont to take the case in which the perpendicular falls within the tringle.)
10. To describe a square that shall be equal to a given rectilineal figure.
11. The square on any straight line drawn from the vertex of an isosceles triangle to the base is less than the square on a side of a triangle by a rectangle contained by the segments of the base.

SECOND CLASS PROVINC1AL CERTIFICATES, 1875.

TIME-TWO HOURS AND THREE-QUARTERS.
Note.-Those students who take only Book I. will confine themselves to the first seven questions. Those who take Books I. and II. will omit the quextions marked with an asterisk (*), namely, (1) and (2).
*1. If one side of a triangle be produced, the exterior angle is greater than either of the interior opposite angles.
*2. If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, namely, the sides opposite to equal angles, then shall the other sides be equal, each to each.
3. If a straight line falling on two other straight lines make the alternate angles equal to each other, these two straight lines shall be parallel.
tht lumes, ther, the ther.
the same ud on the ins their it angles. is aright and join twice the and also tnined by on the line : (5, II.) ending nu sides con11 be suf. cular falls
iven rectie vertex. of than the contained
s, 1875.
ill confine who take 1 with an
rior angle ite angles. ual to tivo side equal alal angles, each.
ines make these two
4. If a straight line fall upon two parallel straight ines, it makes the two interior angles upon the sance side together equal to two night angles.
6. Assuming Proposition XXXII, dednce the corollary: "all the extetior nughs of any rectilineal figure, made by prolucing the sides successively in the sume direction, are together equal to four right angles."
6. If a struight line, drawn parallel to the base of a triangle. bisect one of the sides, it shall bisect the other also.
7. Let ABC and ADC be two triangles on the sume base AC and between the same parallels AC amil DD. lrove, that, if the sides $A B$ nud $B C$ be equal to one nother, their sum is less than the sum of the sides AD and DC.
8. If a straight line be divided into nuy two parts, the rectangles contained by the whole and cach of the parts nre together equal to the syuare on the whole line.
9. If a struight line be hisected nad prolnced to any point, the reetangles contained by tho whole line thus pro. duced, ind tho part of it produced, together with, etc., ($(\mathrm{f}, \mathrm{II})$.
co. Divide a straight line into tro parts, such that the sum of their siduares may be the least vossible.
finst class provincial certificates, 1871.
thae--threr hoons.

1. To describe n equare that shaid be equal to a giren rectilineal higure
2. A segment of a cirele being given, to describe the circle of which it is the segment.
3. If the vertical mughe of a t:inugle be divided into two equal augles by a straight line which also euts the base, the segments of the lase shall have the same zatio which the other sides of the thangle have to oue nuother.
4. In n ifhthongled triangle, if a perpenificular be dramn from the binht male to the base, the trimgles om each side of it are simitar to the whode trable mat to one number.
5. If fum strainht lines le propromals, the similar rectilineal figures imianty duscibed apon them shand nisu bo propurtimals.
6. Draw a straidit lime on as to tonch two given circes.
7. Let A $13 C$ le a triange, and from if and C, the extremi-
 Frad E, tho widdle points of AC and ABrespect-

APLENDIX.

ively, then, if $B F=C E, A B$ and $A C$ shall be equal to one another.
8. Describe an equilateral triangle equal to a given triangle.

FIRST OLASS PROVINCIAL CERTIFICATES, 1872.

TIME—TWO AND A HALF HOURS.

1. If a straight line touch a circle, and from the point of contact a straight line be drawn cutting the circle, the angles which this line makes with the line touching the circle shall be equal to the angles which are in the alternate segments of the circle.
2. To inscribe a circle in a given triangle.
3. Equal triangles which have one angle of the one equal to one angle of the other, have their sides about the equal angles reciprocally proportional.
4. Similar triangles are to one another in the duplicate ratio of their homologous sides.
5. In any right angled triangle, any rectilineal figure described on the side subtending the right angle is equal to the similar and similarly desoribed figures on the sides containing the right angle.
6. Two circles cut each other, and through the points of seotion are drawn two parallel lines, terminated by the circumferences. Prove that these lines are equal.
7. Let $\mathrm{A} C$ and BD , the diagonals of a quadrilateral figure A B C D, interseot in E. Then, if A B be parallel to CD, the circles desoribed about the triangles ABE and C D E shall touch one another.
8. Divide a triangle into two equal parts by a straight line at right angles to one of the sides.

FIRST CLASS PROVINCIAL CERTIFICATES, 1878.

```
TIME-THREE HOURS.
```

1. The angle in a semicircle is a right angle.
2. A segment of a circle being given, describe the circle nt which it is a segment.
3. Give Euclid's definition of proportion; and prove, by taking equi-multiples according to the definition, that $2,3,9$, 13, are not proportionals.
4. Similar triangles are to ono another in the duplicate ratio of their homologous sides.
5. To tind a mean proportional botween two given straight lines.
6. Through C, the vertex of a triangle A C B, which has the sides $A C$ and $C B$ equal to one another, a line CD
is drawn parallel to A B; and straight lines, A D, $D E$, are drawn from A and B to any point D in $C D$. Jrove that the angle A CD is greater than the angle A D 13 .
7. ABCD is a quadrilateral tipare insoribed in a circle. From A and B, perpondiculars AE,BF aro let fall on C D (proluced if necessary) ; nud from C and D. perpendiculars C G , D H, aro let fuil on is A (produced if necessary). Prove that the rectanglos $A E, B F$ and C (k, D H, are equal to one another.
8. ABCD is a quadrilateral figure inscribed in a circle. The straight line D E drawn through D parallel to A B, cuts the side BC in E ; and the straight line A E pro. duced meets D C produced in I. Prove, that if the rectangle $\mathrm{BA}, \mathrm{A} D$ be equal to the rectangle $\mathrm{E} \mathrm{C}, \mathrm{CF}$, the triangle A D W shall be equal to the quadrilateral A D CD.

FIRST CLASS PROVINCIAL CEIRTIFICATES, 1874.

THME-THMEE HOOLS.

1. In equal circles, equal straight lines cut off equal circumferences, the greater, equal to the greater, and the less to the less.
2. To describe a circlo about a given equilatoral and equiangular pentagon.
B. To find a mean proportional between two givon straight lines.
3. What is meant by duplicate ratio? Write down two whole numbers, which are in the duplicata ratio of $\frac{1}{2}$ to $\frac{1}{8}$.
What are similar rectilineal figures?
Similar trimgles are to one mother in the duplicate ratic of their homologous sides.
4. In any right angled triangle, my rectilineal figure described on the side subtending the right angle is equal to the similar and similariy descrived figures ou the sides containing the right angle.
5. To describe a triangle, of which the base, the vertical angle, and the sum of tho two sides are given.
6. From A the vertex of a triangle ABC , in which each of the angles ABC and 1 CB is less than right angle, AD is let fall perpendicular on the base BC. Produce BC to E , making CE equal to AD ; and let F be a point in $A C$, such that the triangle $B F E$ is equal to the triangle ABC. Provo that k is one of the angular points of a square inseribed in the triaugle ABC, with one of its sides on BC.
7. Let E be the point of intersection of the dingonals of a quadrilaternl figure ABCD, of which any two opposite angles are together equal to two right angles. Produce BC to G, making $C(G$ equal to EA ; and prodnce Al) to F , making DF equal to BE . Prove that if EG and EF be joined, the triangles EDF and ECG are equal to one another.

FIRST CLASS PROVINCIAL CERTIFICATES, 1875.
TIME-THREE HOURS.

1. If two triangles have two angles of the one equal to two angles of the other, each to each, and one side equal to one side, namely, the sides adjacent to the equal angles in each, then shall the other sides be equal each to each.
2. From a given circle to cut off a segment, which shall contain an angle equal to a given rectilincal angle.
3. If the angle of a triangle be divided into two equal angles by a straight line which also cuts the baca, the segments of the base shall have the same ratio which the other sides of the triangles have to one another.
4. The sides about the equal angles equi-angular triangles are proportionals; and those which are opposite to the equal angles are homologous sides.
5. If the similar rectilineal figures similarly described upon four straight lines be proportionals, those straight lines shali be proportionals.
6. Auy rectangle is half the rectangle contained by the diameters of the squares on its adjacent sides.
7. Throngh a given point within a given circle, to draw a straight line such that one of the paris of it intercepted between that point and the ciremmference shall be doable of the other.
8. If, from niy point in a circnlar are, perpendiculars bo let fall on its bounding radii. the distance of their feet is invariable.

MA'TRICULATION, 1871.

1. State the points of agreement and disagreement of the circle, square nul rhombins, with one another as appearing from their definitions.
2. Any two sides of a triangle are together greater than the third side.
Show that the sum of the excesses of each pair of side, above the third side is equal to the sum of the the sides of the triangle.
3. If the square described upon one of the sides of a triangle be equal to thee simare inspribed on the other two sides of it, the angle contaned by these two sides is a right angle.
In an isosceles triangle if the square on the lonse be aqual to three times the sipare on either side the vertical angle is two-thirls of iwo right angles.
4. If a straight line be diviled into any two parts the square on the whole line is equal to the square on the iwo parts. together with twice the rectangle contaned by the parts.
Is there any difference between the principle of this proposition and the statement $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
Of all the squares that can be inscribed within an. other the least is that formed by juining the bisections of the side.
5. If a straight line be divided into two equal and also into two nherual parts, the squares on the two unequal parts are tuguther double of the square on half the line and of the sumare ou the liine between the points of section.
Does the statement respecting the equality of the square hohd for any other division of the line.
6. Equal straight lines in a circle are equally distant from the centre; and conversely, those which are equally distant from the centre are equal to me mother.
The lines joining the extremities of two equal straight lines in a circle towards the same parts are parallel to each other.
7. What is meant by the Angle in a segment of a circle ? Datine similar segments of circles.
Upon the same straight line and upon the same side of it, there camot be two similar segments of circles not coinciling with one mother.
8. In equal circles the angles which stand upon equal arcs, are equal to one mother whether they be at the centres or circumferences.
If two equal cireles so intersect each other that the tangents at one of their points of intersection are inclined to each other at mungle of 60° shew that
Radius of circle : line joining their centres : : $1: \sqrt{3}$.
9. From a given circle to cut off a segment that shall contain an angle equal to a given rectilineal angle.
In a given circle inscribe a triangle which shall have a given vertical angle, and whose area shall be equal to a given triangle; and shew with what limitation this san be doue.
10. When is a circle said to be inscribed in a rectilines figure.
To inscribe a circle in a given triangle.
11. Inscribe an equilateral and equiangular pentagon in a given circle.
Show how to divide a right angle into fifteen equal parts.

MATRICULATION, 1872.

HONORS.

1. From a given point to draw a straight line equal to a given straight line.
Explain what different constructions there are in this proposition.
2. If a side of a triangle be produced, the exterior angle is equal to the two interior and opposite angles; and the three interior angles of every triangle are together equal to two right angles.
Find the number of degrees in one of the exterior angles of a regular heptagon.
3. Triangles upon the same or equal bases and between the same parallels are equal to one another.
By means of these propositions prove that a line drawn parallel to the base of a triangle and cutting off onefourth from one of its sides, will also cut off a fourth part from the other side.
4. If a straight line be divided into two equal and also into two unequal parts, the squares on the two unequal parts are together double of the square on half the line, and of the square on the line between the points of section.
If a chord be drawn parallel to the diameter of a circle and from any point in the diameter lines be drawn to its extremities, the sum of their squares will be equal to the sum of the squares of the segments of the diameter.
5. To divide a given straight line into two parts, so that the rectangle contained by the whole and one of the parts shall be equal to the square on the other part.
Solve the problem algebraically. Interpret and construct geometrically the second root so obtained.
Divide a given line so that one segment may be a geomet. ric mean between the whole and the other.
6. In every triangle, the square on the side subtending either of the acute angles, is less than the squares on the sides containing that angle, by twice the rectangle contained by either of these sides, and the straight
line intercepted between the acute angle and the per. pendicular let fall upon it from the opposite angle.
In a triangle ABC , if AD be drawn to the bisection of BC , the difference between the square on BC and twice the square on AC is double of the difference between ne square on AB , and twice the square ov Ais .
7. If a straight line touch a circle, the straignt linf tamen from the centre to the point of contact sasais be perpendicular to the line touching the circle.
The locus of intersections of all pairs of tangents so a circle which contain a given angle is a circle.
What is the magnitude of this angle, in order that the circle may be double the original?
8. The opposite angles of any quadrilateral figure inscribed in a circle are together equal to two right angles.
What relation must exist between the sides of a quadrilateral in order that a circle may be inscribed in it? Show that your relation is sufficient.
a. If from any point without a circle two straight lines be drawn, one of which cuts the circle, and the other touches it ; the rectangle contained by the whole line which cuts the circle, and the part of it without the circle, shall be equal to the square on the line which touches it.
Show that this proposition is an extension of III, 35.
From a given point without a circle show how to draw (when possible) a line that will be divided by that circle in Medial section.
9. Inscribe a circle in a given triangle.

When is one rectilineal figure said to be inscribed in another.
11. In a riglit-ingled triangle, if the perpendicular be drawn from the right angle to the base; the triangle on each side of it are similar to the whole triangle and to one another.
Construct geometrically the roots of the equation $x(a-x)$ $=b^{2}$ and give the geometric interpretation of the case of equal and impossible roots that the problem may present.
12. To describe a rectilineal figure which shall be similar to one given rectilineal figure and equal to another given rectilineal figure.

MATRICULATION, 1873. HoNORs.

1. If a straight line falls upon two parallel straight lines, it makes the alternate angles equal to one another, and
the exterior angle egual to the interior and opposite upon the same side, and also the two interior angles upon the same side together equal to two right angles.
Vary the order of proof in this proposition by proving the last statement first.
2. If a straight line falling upon two other straight lines, makes the interior augles npon the same side together equal to two right angles, the two straight lines shall be parallel to one another.
Can this be inferred immediately from the 12th axiom? Give the reasons for your answer.
B. Any two sides of a triangle are together greater than the third side.
A straight line is the shortest distance between two given points.
3. In any right angled triangle, tho square which is described upon the sile subtending the right angle, is equal to the squares described upon the sides which contain the right angle
Any two parallelograms being described on two sides of any triangle, to describe on the third side a parallelogram equal to their sum.
4. To inseribe a square that shall equal a given rectilineal figure.
Tu divide a given straight lino into two parte such that their rectangle is egual to a given rectilineal fignre.
What limitation mast there be to the magairule of the given figure?
5. If a straight line drawn throngla the centre of a circle bisect a straight line in it which does not pass through the centre, it shall cat it at right angles; and, if it cut it at right angles, it shall biscet it.
Descrive three circles of given radii which shall touch cach other extermally two and two.
6. In the above show that the common tangents ment in one point, with which as centre, a circle may be described passing through the three points of contact.
What proposition of Euclid does this correspond to ?
7. If straight lines within a circle intersect in ono point the rectingle under the segments is constant.
If ${ }^{\prime}$ at limitation mast be made to reuder the converse true? lrove the converse when true.
8. The opposite angles of any quadrilateral figure inscribed in a ciscle are together equal to two right angles. Deduce-The anglo in a semicircle is a right angle. (Prop. 31 13k. III.)
9. To describe an isosceles triangle having each of the augles at the base double of the third angle.

A tangent to a circle is drawn at an angular point of an inscribed regular pentagon, and a side produced through that point, show that a straight lime maling equal intercepts on the tangent and the side produced, is paradle! to the tangent at one of the adjacent angular points.
11. To describe a circle about a given equilateral pentagon.

With an angular point of the regular pentagon us centre, and a side as radius, describe a second circle; show that the tangent to the first circle at a point of intersection of the circles meets the common diameter at a point without the second circle.
12. In the above show that the distance from the above point to the centre of the first circle is greater than the dianaeter of the second circle.

MATHICULATION, 1874.

 monors.* Nos. 1 and 3 to he omitted for Senior Matriculation ; Nos. 12 and 13 to be omitted for Junior Matriculation.

1. Parallelograms apon the sume base and between the same paraliels are equal to one another.
From the centre O of a circle the radii $O A, O B$ are drawn, the tangents at A and B meet in C; if $O C$ be bisected in D and DE be drawn perpendicular to.OD meeting $O B$ in E, then $A B$ will bisect the figure OBC.A.
2. In every triangle the square on the side subtendiar any of the neute mag!es is less than the squares on the sides containing that angle by twice the rectangle contained by either of these sides, and the strainht line inter cepted between the perpendicular let fall upon it from the opposite angle and the acute angle.
Construct a square that shall be equal to the difference between the smu of the sfumres on two given straight lines and the rectangle under these lines.
3. Through a given point to draw a straight line parallel to a given straght line.
From a given puint in the circumference of a circle to draw a chord, when possible, that shall be bisected by a given chord.
4. Find the sum of (1) all the interior angles of any rectilineal figure ; $(\underset{2}{2})$ all the exterior angles.
$A B, C D$ the alternate silles of a regular poiygon are produced to meet in E, if $A C$, OF meet in F, U being the centre of the polygon, show that $A F^{\prime} \cdot F^{\prime} C=O A^{\prime} \cdot E^{\prime \prime}$
5. To divide a given straight line into two parts, so that the rectangle contained by the whole and one of the parts shall be equal to the square on the other part.
If $A B$ be bisected in C and produced to a point D, such that $A C . \dot{U} D=A D . D B$, then $A D$ is divided in C in the manner required by the proposition.
6. If from any point without a circle two straight lines be drawn, one of which cuts the circle and the other touches it, the rectangle contained by the whole line that cuts the circle and the part of it without the circle shall be equal to the square on the line that touches it.
Any number of circles pass through two given points A and B; shew that with any given point C in $A B$ produced, as centre, a circle may be described cutting the other circles at right angles, and findits radius.
7. To draw a straight line from a given point either without or in the circumference which shall touch a given circle.
Find the point in the line joining the centres of two circles of different radii, such that if a perpendicular be drawn through it, the taugents to the circles from any point in this perpendicular may be equal.
8. The angle at the centre of a circle is double of the angle at the circumference upon the same base, that is, upon the same part of the circumference.
If a circle be described touching one of the equal sides of an isosceles triangle at the vertex and having the other side as chord, the are lying between the vertex and base is one-hnlf the are subtended by the chord.
9. If a straight line touch a given circle and from the point of contret a straight line may be drawn cutting the circle, the angles made by this line with the line touching the circle shall be equal to the angles which are in the alternate segments of the circle.
10. To inscribe an equilateral and equiangular pentagon in a given circle.
If two diagonals of a regular pentagon intersect and a circle be described about the triangle of which the greater segments are tro sides, two sides of the pentagon which terminate at the other extremitics of these segments are tangents to the circle at these points.
11. To describe a circle about a given square.

Find the relation between the areas of the circles described about and inscribed in a given square.
12. If a straight line be parallel to the base of a triangle it will cut the sides, or the sides produced, proportionally, and if the sides, or the sides produced, be cat
proportionally, the straight line which joins the points of section shall be parallel to the base.
13. To find a mean proportional between two given straight lines.

JUNIOR AND SENIOR MATRICULATION, 1875.

* Junior Matriculants will omit questions 15 and 16, and Senior Matriculants questions 12 and 13.

1. Define the terms axiom, postulate, scholium, corollory.
2. If two triangles have two sides of the one equal to two sides of the other, each to cach, but the angle con. tained by the two sides of the one grenter than the angle contained by the two sides equal to them, of the other, the base of that which has the greater augle shall be greater than the base of the other.
3. If a side of any triangle be produced, the exterior angle is equal to the two interior and opposite angles; and the three interior angles of every triangle are together equal to two right angles.
4. Triangles on equal bases and between the same parallels are equal to one anotber.
5. If the square described on one of the sides of a triangle be equal to the squares described on the other two sides of it, the angle contained by these two sides is a right angle.
6. If the diagonals of Ω quadrilateral bisect each other, it is a parallelogram : if the bisecting lines are equal it is rectangular ; if the lines bisect at right angles it is equilateral.
7. If a straight line be divided into two equal, and also into two unequal parts, the squares on the two unequal parts are together double of the square on half the line and of the square on the line between the points of section.
8. Divide a straight line into two parts, so that the rectangle contained by the whole and one of the parts may be equal to the square on the other part.
9. In the Algebraic solution of the preceding problem, we obtain a quadratic equation which gives two values of the unknown quantity. Enunciate the Geometrical proposition which corresponds to the other root.
10. The sum of the squares on the diagonals of a parallelo. gram is equal to the sum of the squares on the sides.
11. The opposite angles of a quadrilateral inscribed in a circle are together equal to two right angles.
12. The straight lites bisecting the sides of a triangle at right angles meet in a point.
13. Construct a triangle, having given the middle points of sides.
14. Describe a circle about a given equilateral and equiangular pentagon.
15. From a given straight line to cut off any part required.
16. Similar triangles are to one another in the duplicate ratio of their homologous sides.

> TIME-3 nouns.

1. Describe an equilateral triangle upon Ω given finite straight line.
By a method similar to that used in this problem, describe on a given finite straight line an isosceles triangle, the sides of which shall be each equal to twice the base.
2. If a straight line fall on two parallel straight lines, it makes the alternate angles equal to one another, and the exterior angle equal to the interior and opposite angle on the same side; and also the two interior angles on the same side together equal to two right marles.
What oljections have lieen urged agninst the doctrine of parallel straght limes as it is laid down ly Enclid? Where does the difficulty originate and what has been suggested to remove it?
B. In any right angleietriangle, the squares described on the sides containing the right angle are torether equal to the square of the side subtending the right angle.
Show, by deseribing a spuare on the outer side of one side, and on the immer side of the other, that the two squares thus describel will cut into three pieces, so as exactly to make up the square of the lippotenuse.
3. Divide alyebraically a given line (a) into two parts, such that the rectangle contained by the whole and one part may be equal to the square of the other. Deduce Euclid's constraction from one solution and explain the other.
4. If two straight lines within a circle cut one another, the rcctangle contained by the sugments of one of them is equal to the rectangle contained by the segments of the other.
If, through a point within a circle, two equal straight lines be drawn to the circmonference, and produced, they will be at the same distance from the centre.
5. Explain and illustrate the fifth and seventh definitions in the fifth book of Euclid, and shew that a magnitude has a greater ratio to the less of two unequal magnituden than it has to the greater.
6. With the four lines contain $a+i, a+c, a-b, a-c$ units respectively, construct a quadrilateral capable of hav. ing a circle inscribed in it.

Prove tlint no parnllelogram can be inscribed in a circle except a rectangle; nud that no purallelogram can be described about a circle exeept a rhomb.
8. Similar trimgles are to one another in the dnpliento ratio of their homologons sites. How does thappen from Enclid that the duplicate ratio of two magnitudes is the same as that of their squares?

FIRST CLASS PROVINCIAL CEPTIFICATES, JULY, 1876
TLME-TIHEE HOURS.
N. B.-Al!gebraic symbols must not be used.

1. (a) The straight line drawn at right angles to the diameter of a circle from the extremity of it, falls without the circle; and no straight line can be drawn from the extremity, between that straight line and the circumference, so as not to cut the circle. (III 16.)
(b) Draw a common tangent to two given circles. How many can be drawn? (Apollomins.)
2 (i) The opposite ancles of any guadrilateral figure in. acribed in n circle are together equal to two right angles. (III 22.)
(b) If straight lines be drawn from any point on the circumference of a circle perpendicular to the sides of an inseribed triangle, their feet are in the same straight line. (M. F. Jacoli.)

- (a) If the chord of a circle be divided into tro segments by n point in the chord or in the chord produced, the rectangle contained by these segments will be equal to the difference of the squares on the radins and on the line joining the given point within the centre of the circle. What propositions in Euclid follow immediately from this?
(b) Describe a circle which shall pass through a given point and touch two straight lines given in position. (Apollomiue.)

4. (a) To describe an isosceles triangle, having cach of the nngles at the base double of the thitl angle. (IV 10.)
(b) Construct a triangle having ench of the anales at the base equal to seven times the third ang!e
5 (a) If the vertical angrie of a trimgle be bisected by a straight line which also cuts the base, the segments of the base have the same ratio which the other siles of the triangle have to one another; and, if the segments of the base have the same ratio which the other sides of the triangle have to one another, the straight line
drawn from the vertex to the point of section shall bisect the vertical auglo. (VI 3.)
(b) The pointe in which the bisectors of the external angles of a triangle meot the opposite sives, lie in v atraikés lino.

SECOND CLASS CELTTIFICATES, JULY, 1876.
TIME-THHEE HOORS.
N-B.-Alyebraic symbols must not be used. Candilutes woho take Book I/ will omit Questions 1, 2 and 3, uarked. values.
-1. The angles at the baso of an isosceles triangle aro equal to ono another; and if the equal sides be produced, the augles on the other side of the base shall be equal to one another.
Where does Euclid require the second part of this theorum?
*2. If two triangles have two sides of the one equal to two sides of the otiner, each to each, but the angle contained by two sides of one of thern greater than the angle contained by the two siles equal to them of the other, the base of that which has the greater angle shall be greater than the base of the other.
Why the restriction " Of the two sides DE, DF, let DE be the side which is not greater than the other"?
16 *3. If two triangles have two angles of the one equal to two angles of the other, each to each, and have also the sides adjacent to tho equal angles in each, equal to one anothor, then shall tho other side bo equal, each to sach; and also the third angle of the one to the third angle of the other. (Prove by superposition.)
What propositions in Book I are thas proved ?
4. If a straight line fall upon two parallel straight lines, it inakes the alternate angles equal to ono another, and the exterior angle equal to the interior and opposite angle on the same side; and also the two interior angles on the same side together cqual to two right angles.
What objection may be taken to the twelfth axiom? What is its converse?
5. In any right-angled triangle, the square which is described on the side subtending the right angle is equal to the squares described on the sides which contain the rirht angle.
Prove also by dissection and superposition.
6. Draw through a givon point between two straight lines not parallel a straight line which shall be bisected in that point.
7. The perpendiculars from the angles of a triangle on the opposits sides meet in a point.
$20 \mid 8$. Given the lengths of the lines drawn from the angles of n triangle to the points of biseetion of the opposite sides, construct the triangle.
0. If a straight line be divided into two parts, the square on the whole line is equal to the squares on the parts, together with twice the rectangle contained by the parts.
20 10. In every triangle, the square on the side subtending an acute angle is less than the squares on the sides containing that angle by twice the reetangle contained by either of these sides, and the straight line intercepted between the pespendicular let fall on it from the opposite angle, and the acute angle.
rom the ection of arts, the squares rectangle
btending s on the rectangle 3 straight ar let fall ate angle.

[^0]: ${ }^{1}$ I regard this point as completely set led in Cambridge by the following notices prefixed to the parers on Euclid set in the Senate-House Examinations :
 I. In the Previous Examination :

 In answers to these questions any intelligible symbols and abbreviations may be used.
 II. In the Mathematical Tripos:

 In answers to the questions on Euclid the symbol - must not be used. The only albreviation admitted for the square on AB is "sq. on AB ," and for the rectangle contained by AB and DD , "rect. AB, CD."

[^1]: E. . .

[^2]: S. E.

